博碩士論文 107522018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.14.128.82
姓名 程子寬(Zi-Kuan Cheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於遷移學習智慧工廠生產品質預測
(Manufacturing Quality Prediction with Transfer Learning for Smart Factories)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於資訊科技的快速發展,帶動全球許多產業朝向數位化轉型,許多傳統製造業也逐步發展工業4.0(Industry 4.0)智慧工廠。這些工廠希望使用物聯網(Internet of Things, IoT)、大數據(big data)、機器學習(machine learning)以及雲端計算(cloud computing)等先進技術,實現智慧製造(smart manufacturing)的目標。如此一來,製造業對於生產系統上的產品生產品質能有更好的管控,達成更高的良率。本論文聚焦於線切割放電加工(wire electrical discharge machining, WEDM)產品的表面粗糙度(surface roughness)預測,使用遷移學習(transfer learning)技術於兩種不同工件材質,其中一個是資料數量較多的材質A工件,在此視為來源域(source domain);而另一個則是資料數量較少的材質B工件,在此視為目標域(target domain)。
具體而言,本論文先藉由數量較多的材質A工件資料,在加工之前透過靜態生產參數,並在加工之後透過靜態生產參數以及動態機台狀態資料,訓練出可以預測工件表面粗糙度的神經網路模型,包括深度神經網路(deep neural network, DNN)以及門控循環單元(gate recurrent unit, GRU)與深度神經網路結合的神經網路預測模型。然後使用兩種遷移學習作法:第一種為權重鎖定(weight-freezing)方法,藉由數量較少的材質B工件資料,將原先提供訓練好可以預測材質A工件表面粗糙度的神經網路模型,轉換為可以預測材質B工件表面粗糙度的神經網路模型。第二種遷移學習為多任務學習(multitask learning):藉由共同使用數量較多的材質A工件資料以及數量較少的材質B工件資料,同時訓練出可以預測材質A以及材質B工件表面粗糙度的個別神經網路模型。實驗結果顯示,二種遷移學習方法都可以充分利用數量較少的目標域資料,有效提升來源域與目標域的神經網路模型的預測準確度。
摘要(英) With the rapid development of information technology in recent years, many industries around the world are moving toward digital transformation, and many traditional manufacturing industries are also gradually developing Industry 4.0 smart factories. The factories intend to utilize advanced techniques such as the Internet of Things (IoT), big data, machine learning, and cloud computing, to reach the goal of smart manufacturing. In this manner, the product quality is better controlled and the yield rate is improved. This paper focuses on the prediction of the surface roughness (SR) of wire electrical discharge machining (WEDM) workpieces with transfer learning techniques for two different materials, denoted as material-A and material-B. The data of material-A workpiece are regarded as source domain data, whose amount is larger, whereas the data of material-B workpiece are regarded as target domain data, whose amount is smaller.
First, material-A workpiece data are applied to train neural network models for SR prediction. Specifically, static manufacturing parameters are used to train deep neural networks (DNNs) for SR prediction before manufacturing, whereas static manufacturing parameters along with dynamic manufacturing conditions are used to train gate recurrent unit (GRU) networks for SR prediction after manufacturing. Afterwards, two transfer learning methods are utilized. The first method is weight-freezing. It uses a small amount of material-B workpiece data to train a neural network model that can predict surface roughness of material-B workpiece on the basis of well-trained models that can predict surface roughness of material-A workpiece. The second method is multi-task learning. It uses both material-A workpiece data, whose amount is larger, and material-B workpiece data, whose amount is smaller, to train separate neural network models for SR prediction for material-A and material-B workpieces, respectively. The experimental results show that the two transfer learning methods both can efficiently improve prediction accuracy of source domain and target domain neural network models through using only a small amount of target domain data.
關鍵字(中) ★ 工業4.0
★ 智慧製造
★ 遷移學習
★ 線切割放電加工
★ 品質預測
★ 表面粗糙度
關鍵字(英) ★ Industry 4.0
★ Smart Manufacturing
★ Transfer Learning
★ WEDM
★ Quality Prediction
★ Surface Roughness
論文目次 中文摘要 ... I
Abstract ... II
誌謝 ... III
目錄 ... IV
圖目錄 ... VI
表目錄 ... VIII
一、緒論 ... 1
1.1. 研究背景與動機 ... 1
1.2. 研究目的與貢獻 ... 2
1.3. 相關文獻探討 ... 2
1.4. 論文架構 ... 3
二、背景知識 ... 4
2.1. 遷移學習 ... 4
2.2. 線切割放電加工法 ... 13
2.2.1. 放電加工法介紹 ... 13
2.2.2. 線切割放電加工法介紹 ... 14
2.3. 馬可夫鏈與狀態轉移機率矩陣 ... 15
2.4. 門控循環單元 ... 18
三、問題定義與研究 ... 23
3.1. 問題定義 ... 23
3.2. 表面粗糙度 ... 25
3.3. 資料前處理 ... 28
3.3.1. 取得可用時序資料 ... 28
3.3.2. 建立馬可夫鏈狀態轉移特徵 ... 28
3.3.3. 少數時序資料的例外處理 ... 31
3.4. 模型架構與參數設置 ... 33
3.4.1. 模型架構 ... 33
3.4.2. 模型參數設置 ... 34
3.5. 遷移學習作法 ... 37
3.5.1. 權重鎖定的遷移學習 ... 37
3.5.2. 多任務學習 ... 39
四、實驗與評估 ... 42
4.1. 實驗環境 ... 42
4.2. 實驗結果與評估 ... 43
4.2.1. 權重鎖定的訓練 ... 44
4.2.1.1. 加工前之預測模型 ... 44
4.2.1.2. 加工後之預測模型 ... 47
4.2.1.3. 模型執行時間 ... 52
4.2.2. 多任務學習訓練 ... 53
4.2.2.1. 加工前之預測模型 ... 54
4.2.2.2. 加工後之預測模型 ... 56
五、結論與未來展望 ... 59
參考文獻 ... 60
參考文獻 [1] C. L. Fan, and J. R. Jiang, "Surface Roughness Prediction Based on Markov Chain and Deep Neural Network for Wire Electrical Discharge Machining," in Proc. of the 2019 IEEE Eurasia Conference on IOT, Communication and Engineering, Oct. 2019.
[2] A. Mandal, and A. R. Dixit, "State of Art in Wire Electrical Discharge Machining Process and Performance," International Journal of Machining and Machinability of Materials, Vol. 16, No. 1, pp. 1-21, Jan. 2014.
[3] U. Esme, A. Sagbas, and F. Kahraman, "Prediction of Surface Roughness in Wire Electrical Discharge Machining Using Design of Experiments and Neural Networks," Iranian Journal of Science & Technology Transaction B: Engineering, Vol. 33, No. 3, pp. 231-240, June 2009.
[4] J. Kumar, "Prediction of Surface Roughness in Wire Electric Discharge Machining (WEDM) Process based on Response Surface Methodology," International Journal of Engineering and Technology, Vol. 2, No. 4, pp. 708-712, Jan. 2012.
[5] G. E. P. Box, and D. W. Behnken, "Some New Three Level Designs for the Study of Quantitative Variables," Technometrics, Vol. 2, No. 4, pp. 455-475, Nov. 1960.
[6] L. Y. Pratt, "Discriminability-Based Transfer between Neural Networks," in Proc. of the 5th International Conference on Neural Information Processing Systems, pp. 204-211, Nov. 1992.
[7] S. J. Pan, and Q. Yang, "A Survey on Transfer Learning," IEEE Transactions on Knowledge and Data Engineering, Vol. 22, No. 10, pp. 1345-1359, Oct. 2010.
[8] Y. Ganin, and V. Lempitsky, "Unsupervised Domain Adaptation by Backpropagation," in Proc. of the 32nd International Conference on International Conference on Machine Learning, Vol. 37, pp. 1180-1189, July 2015.
[9] MNIST-M dataset for Keras, https://github.com/VanushVaswani/keras_mnistm/releases, accessed in June 2020.
[10] A. S. Qureshi, A. Khan, A. Zameer, and A. Usman, "Wind Power Prediction using Deep Neural Network based Meta Regression and Transfer Learning," Applied Soft Computing, Vol. 58, pp. 742-755, May 2017.
[11] A. S. Qureshi, and A. Khan, "Adaptive Transfer Learning in Deep Neural Networks: Wind Power Prediction using Knowledge Transfer from Region to Region and Between Different Task Domains," Computational Intelligence, Oct. 2018.
[12] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain Adaptation via Transfer Component Analysis," IEEE Transactions on Neural Networks, Vol. 22, No. 2, pp. 199-210, Feb. 2011.
[13] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How Transferable Are Features in Deep Neural Networks?," in Proc. of the 27th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3320-3328, Dec. 2014.
[14] R. Tong, L. Wang, and B. Ma, "Transfer Learning for Children′s Speech Recognition", in Proc. of 2017 International Conference on Asian Language Processing, Dec. 2017.
[15] Z. Y. He, H. D. Shao, X. Y. Zhang, J. S. Cheng, and Y. Yang, "Improved Deep Transfer Auto-Encoder for Fault Diagnosis of Gearbox Under Variable Working Conditions with Small Training Samples," IEEE Access, Vol. 7, Aug. 2019.
[16] Y. Xu, J. Du, L. R. Dai, and C. H. Lee, "Cross-language Transfer Learning for Deep Neural Network Based Speech Enhancement," in proc. of the 9th International Symposium on Chinese Spoken Language Processing, Oct. 2014.
[17] C. T. Lin, Y. R. Wang, S. H. Chen, and Y. F. Liao, "A Preliminary Study on Cross-Language Knowledge Transfer for Low-Resource Taiwanese Mandarin ASR," in Proc. of 2016 Conference of The Oriental Chapter of International Committee for Coordination and Standardization of Speech Databases and Assessment Techniques, Oct. 2016.
[18] D. X. Dong, H. Wu, W. He, D. H. Yu, and H. F. Wang, "Multi-Task Learning for Multiple Language Translation," in Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Vol. 1, pp. 1723-1732, July 2015.
[19] J. T. Huang, J. Y. Li, D. Yu, L. Deng, and Y. F. Gong, "Cross-Language Knowledge Transfer using Multilingual Deep Neural Network with Shared Hidden Layers," in Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013.
[20] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, "Domain-Adversarial Training of Neural Networks," Journal of Machine Learning Research 2016, Vol. 17, pp. 1-35, May 2016.
[21] H. Daumé III, "Frustratingly Easy Domain Adaptation," in Proc. of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 256-263, June 2007.
[22] S. H. Chen, C. W. Lu, M. C. Lu, and C. P. Wang, "Parameter Design and Planning by WEDM," in 2013 Conference on Green Technology Engineering and Application, May 2013.
[23] R. Y. Xiao, and Z. Y. Xie, "放電加工原理和應用-線切割放電加工," https://wenku.baidu.com/view/7bf4db436bd97f192379e953.html?re=view, accessed in June 2020.
[24] H. Ozkan, F. Ozkan, and S. S. Kozat, "Online Anomaly Detection Under Markov Statistics with Controllable Type-I Error," IEEE Transactions on Signal Processing, Vol. 64, pp. 1435-1445, Mar. 2016. [25] K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," Empirical Methods in Natural Language Processing, Sep. 2014.
[26] Understanding GRU Networks, https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be, accessed in June 2020.
[27] SURFCOM TOUCH - Intuitively Operated Surface Texture Measuring Instruments, https://www.msiviking.com/documents/ZEISS/form-and-surface/Zeiss_Surfcom-Touch.pdf, accessed in June 2020.
[28] E. P. DeGramo, J. T. Black, and R. A. Kohser, Materials and Processes in Manufacturing, 9th Edition, Wiley, ISBN 0-471-65653-4., Dec. 2003.
[29] L. J. Chen, "表面粗糙度及其量測," http://140.112.14.7/~measlab/course/101%E4%B8%8A/%E7%B2%BE%E5%AF%86%E9%87%8F%E6%B8%AC/%E8%A1%A8%E9%9D%A2%E7%B2%97%E5%BA%A6%E9%87%8F%E6%B8%AC%E5%8E%9F%E7%90%86%E8%88%87%E6%8A%80%E8%A1%93%20(NTU%202012).pdf, accessed in June 2020.
[30] 表面粗糙度的參數 - 最大高度, https://www.keyence.com.tw/ss/products/microscope/roughness/line/tab01_b.jsp, accessed in June 2020.
[31] 表面粗度(Surface Roughness), http://dragon.ccut.edu.tw/~mejwc1/p-mea/content/ch_18.pdf, accessed in June 2020.
[32] 表面粗糙度的參數 - 算術平均高度, https://www.keyence.com.tw/ss/products/microscope/roughness/line/parameters.jsp, accessed in June 2020.
[33] D. Zang, J. H. Liu, and H. Z. Wang, "Markov Chain-Based Feature Extraction for Anomaly Detection in Time Series and Its Industrial Application," in Proc. of 2018 Chinese Control And Decision Conference, pp. 1059-1063, June 2018.
[34] G. Klambauer, T. Unterthiner, A. Mayer, and S. Hochreiter, "Self-Normalizing Neural Networks," in Proc. of the 30th International Conference on Neural Information Processing Systems, pp. 972-981, Sep. 2017.
[35] D. P. Kingma, and J. Ba, "Adam: A Method for Stochastic Optimization," in Proc. of the 3rd International Conference for Learning Representations, Dec. 2014.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2020-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明