博碩士論文 107552001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.145.45.25
姓名 李威賜(Wei-Tzu Lee)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 應用關聯規則提取閱讀行為並探索與學習成效的關係
(Apply association rules to extract reading behaviors and explore the relationship with academic performance.)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-6以後開放)
摘要(中) 近年來,線上學習平台日益盛行,線上課程的多元化與豐富程度,學生要學習新知識,並不再侷限於面對面的課程。線上學習平台在國外已經相當的盛行,如Coursera、edX,以及美國知名學校麻省理工學院 (Massachusetts Institute of Technology, MIT) 也都擁有線上學習課程,而國內教育目前也積極地推廣,如Moocs磨課師學習平台,NCUX以及BookRoll線上電子書學習系統等等。
以BookRoll學習平台為例,授課教師將教材轉換成電子書並上傳至平台上,學生上課則會透過平台去閱讀教師準備的教材,來達到學習的目的。BookRoll會記錄每一位學生的學習歷程,但這些資訊並不容易讓授課教師直接掌握每一位學生的學習狀態,來瞭解學生的實際學習狀況,以及時給予協助。
因此本研究分析建立於BookRoll線上學習平台,分析學生學習時,所記錄的歷程與動作。透過方法論,將學習歷程轉換為學習序列,經由統計的方法,分析每位學生的學習行為與動作,來探討其與學習成效之間的關聯性。並藉由Apriori演算法,使用滑動視窗搭配關聯規則分析,尋找高分群學生共同的良好學習樣式,及這些學習樣式對學習成就的影響。
摘要(英) In this few years, online learning, or virtual classes offered is getting more popular, because online learning environments provide a greater degree of flexibility than traditional classroom settings and online platforms can also offer more diverse representations of student populations as learners.
In Taiwan, online learning environments are also promoted positively, such as TAIWANMOOC、NCUX and BookRoll, BookRoll is an online eBook learning system, Teachers can convert course contents into online e-books, and BookRoll can collect the reading logs of students.
This study is to analyze reading logs on BookRoll, use statistical methods to find out the relationship between reading actions and learning performance, and explore the learning patterns via Apriori algorithm, to use sliding window and association rules to find out which learning patterns are great behaviors on learning.
關鍵字(中) ★ 線上學習
★ 電子書
★ 先驗演算法
★ 滑動視窗
★ 關聯規則
★ 學習樣式
關鍵字(英) ★ BookRoll
★ online learning
★ eBook
★ Apriori
★ sliding window
★ association rules
論文目次 摘 要............................I
ABSTRACT................................II
致 謝............................III
目 錄............................IV
圖 目 錄............................VI
表 目 錄............................VII
一、緒 論..............................1
1.1 研究背景............................1
1.2 研究動機............................1
1.3 研究目的............................2
二、文獻探討............................3
2.1 情節探勘............................3
2.2 關聯規則探勘........................4
2.3 情節探勘與關聯規則的應用............5
三、研究內容與方法......................7
3.1 課程描述............................7
3.2 資料集描述..........................8
3.3 學習模式偵測流程....................9
3.3.1 預處理階段........................9
3.3.2 學習模式檢測階段..................12
四、研究結果與討論......................15
4.1 探索閱讀動作和物件與學習成效的相關性....15
4.1.1 探索高分學生與低分學生之間的閱讀動作和閱讀物件差異....15
4.1.2 探索閱讀動作和物件與學習成效之間的關係....19
4.2 探索修改筆記行為與學習成效的相關性....22
4.2.1 探索高分學生和低分學生於修改筆記行為的差異....22
4.2.2 探索修改筆記行為與學習成效之間的關係....25
4.3 尋找修改筆記行為中取得高分的關鍵學習模式....28
4.3.1 找到同頁修改筆記行為中能夠獲取高分的關鍵學習行為....28
4.3.2 尋找閱讀反思修改筆記行為中能夠獲取高分關鍵學習行為....29
4.3.3 尋找重登反思修改筆記行為中能夠獲取高分關鍵學習行為....32
五、結論與未來研究......................47
六、參考文獻............................48
參考文獻 [1]. Mannila, H., & Toivonen, H. (1996). Discovering generalized episodes using minimal occurrences. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD′96), 146-151.
[2]. Codish, D., Rabin, E., & Ravid, G. (2019). User behavior pattern detection in unstructured processes–a learning management system case study. In Interactive Learning Environments, 1-27.
[3]. Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining Association rules between Sets of Items in Large Database. Proceedings of the ACM SIGMOD Conference on Management of Data, Washington, D.C., United States.
[4]. Han, J., Pei, J., & Yin, Y. (1999, May). Mining Frequent Patterns without Candidate Generation. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 1-12.
[5]. Raorane, A.A., Kulkarni, R.V., & Jitkar, B.D. (2012, February). Association Rule - Extracting Knowledge Using Market Basket Analysis. Research Journal of Recent Sciences, 1(2), 19-27.
[6]. Hilage, T., & Kulkarni, R. (2011). Application of data mining techniques to a selected business organization with special reference to buying behavior. Int. J. Database Manag. Syst., 3(4), 169–181.
[7]. Manpreet, K., & Shivani, K. (2016). Market Basket Analysis: Identify the Changing Trends of Market Data Using Association Rule Mining. Procedia Computer Science, 85, 78–85.
[8]. Bhambri, V. (2011, June). Application of Data Mining in Banking Sector. International Journal of Computer Science and Technology, 2(2).
[9]. Ketui, N., Wisomka, W., & Homjun, K. (2019). Association Rule Mining with Permutation for Estimating Students Performance and Its Smart Education System. Journal of Computers, 30(2), 93-102.
[10]. Manjarres, A.V., Sandovalm, L. G. M., & Suárez, M. J. S. (2018). Data mining techniques applied in educational environments: Literature review. Digital Education Review, 33, 235-266.
[11]. Kularbphettong, K., Waraporn, P., & Tongsiri, C. (2012). Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining. World Academy of Science, Engineering and Technology, 66, 502-505.
[12]. Freyberger, J., Heffernan, N., & Ruiz, C. (2004). Using association rules to guide a search for best fitting transfer models of student learning. In: Workshop Analyzing Student-Tutor Interaction Logs Improve Educational Outcomes at ITS Conference, 1-10.
[13]. Basha, S. A. H. (2018, March-April). Study of Education Patterns in Rural and Urban India using Association Rule Mining: Implementation. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3(3), 578-588.
[14]. Oladipupo, O. O., & Oyelade, O. J. (2010). Knowledge Discovery from Students′ Result Repository: Association Rule Mining Approach. International Journal of Computer Science and Security, 4(2), 199-207.
[15]. Zakaria, S.A., Muhamad, W.Z.A.W., & Azziz, N.H.A. (2018). Analyzing undergraduate students′ performance in engineering statistics course using educational data mining: Case study. in UniMAP. AIP Conf. Proc.
[16]. Chen, Y., & Weng, C. (2009). Mining fuzzy association rules from questionnaire data. Knowledge-Based Systems Journal, 22(1), 46–56.
[17]. Upendran, D., Chatterjee, S., Sindhumol, S., & Bijlani, K. (2016). Application of predictive analytics in intelligent course recommendation. Procedia Computer Science, 93(1), 917-923.
[18]. Merceron, A., & Yacef, K. (2005). Educational Data Mining: a Case Study. In Proceedings of the 12th International Conference on Artificial Intelligence in Education AIED 2005, Amsterdam, The Netherlands, IOS Press.
[19]. Jigang, Z., & Jingmei, Z. (2016). The Application of Association Rules Mining in the Analysis of Students′ Test Scores. International Conference on Education, Management and Computer Science, 14-18.
[20]. Bambrah, C., Bhandari, M., Maniar, N., & Munde, V. (2014, March). Mining Association Rules in Student Assessment Data. International Journal of Advanced Research in Computer and Communication Engineering, 3(3).
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明