參考文獻 |
[1] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.
[2] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a systematic com- parison of context-counting vs. context-predicting semantic vectors,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), Baltimore, Maryland: Association for Computational Lin- guistics, Jun. 2014, pp. 238–247. DOI: 10.3115/v1/P14-1023. [Online]. Available: https://www.aclweb.org/anthology/P14-1023.
[3] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre- sentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for Computational Lin- guistics, Oct. 2014, pp. 1532–1543. DOI: 10.3115/v1/D14-1162. [Online]. Available: https://www.aclweb.org/anthology/D14-1162.
[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre- sentations of words and phrases and their compositionality,” in Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2013, pp. 3111– 3119. [Online]. Available: http://papers.nips.cc/paper/5021- distributed- representations-of-words-and-phrases-and-their-compositionality.pdf.
[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,” arXiv preprint arXiv:1607.04606, 2016.
[6] M. Yu and M. Dredze, “Improving lexical embeddings with semantic knowledge,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Lin- guistics (Volume 2: Short Papers), Baltimore, Maryland: Association for Compu- tational Linguistics, Jun. 2014, pp. 545–550. DOI: 10.3115/v1/P14-2089. [Online]. Available: https://www.aclweb.org/anthology/P14-2089.
[7] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu, and T.-Y. Liu, “Rc-net: A general framework for incorporating knowledge into word representations,” in Proceedings of the 23rd ACM international conference on conference on information and knowl- edge management, 2014, pp. 1219–1228.
[8] J. Bian, B. Gao, and T.-Y. Liu, “Knowledge-powered deep learning for word embed- ding,” in Joint European conference on machine learning and knowledge discovery in databases, Springer, 2014, pp. 132–148.
[9] D. Fried and K. Duh, “Incorporating both distributional and relational semantics in word representations,” arXiv preprint arXiv:1412.4369, 2014.
[10] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith, “Retrofitting word vectors to semantic lexicons,” in Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado: Association for Computational Linguis- tics, May 2015, pp. 1606–1615. DOI: 10.3115/v1/N15- 1184. [Online]. Available: https://www.aclweb.org/anthology/N15-1184.
[11] N. Mrkšić, D. Ó Séaghdha, B. Thomson, M. Gašić, L. M. Rojas-Barahona, P.-H. Su, D. Vandyke, T.-H. Wen, and S. Young, “Counter-fitting word vectors to lin- guistic constraints,” in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, San Diego, California: Association for Computational Linguistics, Jun. 2016, pp. 142–148. DOI: 10 . 18653 / v1 / N16 - 1018. [Online]. Available: https :
//www.aclweb.org/anthology/N16-1018.
[12] J.-K. Kim, M.-C. de Marneffe, and E. Fosler-Lussier, “Adjusting word embeddings with semantic intensity orders,” in Proceedings of the 1st Workshop on Represen- tation Learning for NLP, Berlin, Germany: Association for Computational Lin- guistics, Aug. 2016, pp. 62–69. DOI: 10.18653/v1/W16-1607. [Online]. Available: https://www.aclweb.org/anthology/W16-1607.
[13] H. Jo and S. J. Choi, “Extrofitting: Enriching word representation and its vector space with semantic lexicons,” in Proceedings of The Third Workshop on Repre- sentation Learning for NLP, Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 24–29. DOI: 10.18653/v1/W18-3003. [Online]. Available: https://www.aclweb.org/anthology/W18-3003.
[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Advances in neural information processing systems, 2014, pp. 3104– 3112.
[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.
[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., Curran Associates, Inc., 2017, pp. 5998– 6008. [Online]. Available: http://papers.nips.cc/paper/7181-attention-is- all-you-need.pdf.
[18] I. Yamada, A. Asai, J. Sakuma, H. Shindo, H. Takeda, Y. Takefuji, and Y. Mat- sumoto, “Wikipedia2vec: An efficient toolkit for learning and visualizing the em- beddings of words and entities from wikipedia,” arXiv preprint 1812.06280v3, 2020.
[19] E. Pavlick, P. Rastogi, J. Ganitkevitch, B. Van Durme, and C. Callison-Burch, “PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word em- beddings, and style classification,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Con- ference on Natural Language Processing (Volume 2: Short Papers), Beijing, China: Association for Computational Linguistics, Jul. 2015, pp. 425–430. DOI: 10.3115/ v1/P15- 2070. [Online]. Available: https://www.aclweb.org/anthology/P15- 2070.
[20] S. Rajana, C. Callison-Burch, M. Apidianaki, and V. Shwartz, “Learning antonyms with paraphrases and a morphology-aware neural network,” in Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), Van- couver, Canada: Association for Computational Linguistics, Aug. 2017, pp. 12–21. DOI: 10. 18653/ v1/ S17- 1002. [Online]. Available: https:// www. aclweb. org/ anthology/S17-1002.
[21] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM , vol. 38, no. 11, pp. 39–41, Nov. 1995, ISSN: 0001-0782. DOI: 10 . 1145 / 219717 . 219748. [Online]. Available: https://doi.org/10.1145/219717.219748.
[22] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet project,” in 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1, Montreal, Que- bec, Canada: Association for Computational Linguistics, Aug. 1998, pp. 86–90. DOI: 10.3115/980845.980860. [Online]. Available: https://www.aclweb.org/ anthology/P98-1013.
[23] E. Bruni, N. K. Tran, and M. Baroni, “Multimodal distributional semantics,” J. Artif. Int. Res., vol. 49, no. 1, pp. 1–47, Jan. 2014, ISSN: 1076-9757.
[24] F. Hill, R. Reichart, and A. Korhonen, “SimLex-999: Evaluating semantic models with (genuine) similarity estimation,” Computational Linguistics, vol. 41, no. 4, pp. 665–695, Dec. 2015. DOI: 10.1162/COLI_a_00237. [Online]. Available: https:
//www.aclweb.org/anthology/J15-4004.
[25] “Placing search in context: The concept revisited,” ACM Trans. Inf. Syst., vol. 20, no. 1, pp. 116–131, Jan. 2002, ISSN: 1046-8188. DOI: 10 . 1145 / 503104 . 503110. [Online]. Available: https://doi.org/10.1145/503104.503110.
[26] H. Rubenstein and J. B. Goodenough, “Contextual correlates of synonymy,” Com- mun. ACM , vol. 8, no. 10, pp. 627–633, Oct. 1965, ISSN: 0001-0782. DOI: 10.1145/ 365628.365657. [Online]. Available: https://doi.org/10.1145/365628.365 |