博碩士論文 83325036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.191.202.48
姓名 董正談(Cheng-Tan Tung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用小波轉換及Teager運算子做指紋影像強化
(Fingerprint image enhancement based on Teager operator in the wavelet domain)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文的研究中,我們提出一個以小波轉換及Teager能量運算子 (Teager energy operator) 做指紋影像強化的方法。首先,我們對輸入的灰階指紋影像以指定的平均值及變異數作正規化 (normalization),以改善影像中指紋凹凸紋路對比不足的問題。其次,我們根據影像中指紋紋路的區域方向性,估算並找出紋路走向圖 (orientation image),以作為下一步有向濾波 (directional filtering) 的根據。接著我們對影像做小波轉換,利用小波轉換的多重解析度特性,分別針對不同解析度的高頻係數,以小波收縮 (wavelet shrinkage) 去除雜訊,再利用之前求得的紋路走向圖,以有向Teager能量運算子作用於低頻係數以強化影像中指紋凹凸紋路的清晰度。最後,我們再做小波反轉換,以求得經強化過後的指紋影像,做自動指紋辨識 (automated fingerprint identification)。在實驗中,我們使用正確性指數 (goodness index) 及指紋辨識系統來評估本研究所提出方法的效能。根據實驗結果,本研究所提出的指紋影像強化方法,確實可以有效強化指紋影像的品質,並做為後續自動指紋辨識系統之用。
摘要(英) Biometric recognition refers to the use of distinctive physiological and behavioral characteristics (e.g., fingerprints, face, hand geometry, iris, gait, and signature) called biometric identifiers or simply biometrics. Among these biometric identifiers, fingerprints are the oldest and most widely used form. Most automatic recognition systems are based on minutiae matching, hence, a critical step in such systems is to automatically and reliably extract minutiae from the fingerprint images. However, the performance of a minutiae extraction algorithm heavily relies on the quality of the fingerprint images. In order to ensure well performance of the ridge and minutiae extraction algorithms in poor quality fingerprint images, an enhancement algorithm is necessary to improve the clarity of the ridge structure. In this thesis, we propose a fingerprint enhancement algorithm based on the Teager energy operator in the wavelet domain to improve the clarity of ridge and valley structures of fingerprint images. We have evaluated the performance of the image enhancement algorithm using the goodness index of the extracted minutiae and the accuracy of a fingerprint identification system. Experimental results show that the proposed enhancement algorithm really improves both the goodness index and the verification accuracy.
關鍵字(中) ★ 指紋影像強化
★ Teager能量運算子
★ 小波轉換
關鍵字(英) ★ fingerprint image enhancement
★ Teager energy operator
★ wavelet transform
論文目次 Abstract ii
Contents iii
List of Figures v
List of Tables vii
List of Tables vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 System overview 2
1.2.1 Image normalization 3
1.2.2 Segmentation 3
1.2.3 Orientation image estimation 3
1.2.4 Directional Filtering in the wavelet domain 4
1.3 Thesis organization 4
Chapter 2 Related Works 6
Chapter 3 Fingerprint Characteristics 14
3.1 Fingerprint and biometrics 14
3.1.1 Biometric systems 15
3.1.2 A comparison of various biometrics 16
3.2 Advances in fingerprint technology 20
3.2.1 Fingerprint structures 21
3.2.2 Fingerprint acquisition 26
3.2.2 Fingerprint image representation 26
3.2.3 Fingerprint matching 27
Chapter 4 Mathematical Fundamentals 30
4.1 Wavelet transform 30
4.1.1 Wavelet basis 30
4.1.2 Multiresolution analysis 31
4.1.3 Multiresolution analysis for images 34
4.2 Teager energy operator 36
Chapter 5 Fingerprint Image Enhancement 38
5.1 Normalization 38
5.2 Segmentation 39
5.3 Orientation image estimation 39
5.4 Directional filtering in the wavelet domain 43
Chapter 6 Experiments 48
6.1 Experimental environment 48
6.2 Normalization 48
6.3 Segmentation 51
6.4 Orientation image estimation 53
6.4 Directional filtering in the wavelet domain 57
6.5 Performance evaluation 59
6.5.1 Goodness index 59
6.5.2 Verification performance 60
Chapter 7 Conclusions and Future Works 64
References 65
參考文獻 [1] Almanasa, A. and T. Lindeberg, “Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection,” IEEE Trans. Image Processing, vol.9, no.12, pp.2027-2042, 2000.
[2] Aydin, T., Y. Yemez, E. Anarim, and B. Sankur, “Multidirectional and multiscale edge detection via M-band wavelet transform,” IEEE Trans. Image Processing, vol.5, no.9, pp.1370-1377, 1996.
[3] Bahoura, M. and J. Rouat, “Wavelet speech enhancement based on the Teager energy operator,” IEEE Signal Processing Letters, vol.8, no.1, pp.10-12, 2001.
[4] Blotta, E. and E. Moler, “Fingerprint image enhancement by differential hysteresis processing,” Forensic Science International, vol.141, pp.109-113, 2004.
[5] Cappelli, R., D. Maio, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.1, pp.3-18, 2006.
[6] Champod, C., C. Lennard, P. Margot, and M. Stoilovic, Fingerprints and Other Ridge Skin Impressions. CRC Press, Boca Raton, 2004.
[7] Cheng, J. and J. Tian, “Fingerprint enhancement with dyadic scale-space,” Pattern Recognition Letters, vol.25, pp.1273-1284, 2004.
[8] Coetzee, L. and E. C. Botha, “Fingerprint recognition in low quality images,” Pattern Recognition, vol.26, no.10, pp.1441-1460, 1993.
[9] Coifman, R. R. and L. Woog, “Adapted waveform analysis, wavelet-packets and local cosine libraries as a tool for image processing,” in Proc. SPIE, 1995, vol.2567, pp.31-39.
[10] Federal Bureau of Investigation, The Science of Fingerprints: Classification and Uses, US Government Printing Office, Washington DC, 1984.
[11] Greenberg, S., M. Aladjem, and D. Kogan, “Fingerprint image enhancement using filtering techniques,” Real-Time Imaging, vol.8, pp.227-236, 2002.
[12] Hamila, R., J. Astola, F. A. Cheikh, M. Gabbouj, and M. Renfors, “Teager energy and ambiguity function,” IEEE Trans Signal Processing, vol.47, no.1, pp.260-162, 1999.
[13] He, Y., J. Tian, X. Luo, and T. Zhang, “Image enhancement and minutiae matching in fingerprint verification,” Pattern Recognition Letters, vol.24, pp.1349-1360, 2003.
[14] Hong, L., Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.8, pp.777-789, 1998.
[15] Hsieh, C. T., E. Lai, and Y. C. Wang, “An effective algorithm for fingerprint image enhancement based on wavelet transform,” Pattern Recognition, vol.36, pp.303-312, 2003.
[16] Huang, Z. and F. Qi, “Fingerprint enhancement based on MRF with curve accumulation,” in Proc. SPIE, 2001, vol.4552, pp.45-50.
[17] Hung, D. C., “Enhancement and feature purification of fingerprint images,” Pattern Recognition, vol.26, no.11, pp.1661-1671, 1993.
[18] Jedynski, M. and K. Chalasinska-Macukow, “Wavelet transform for preprocessing in an optical correlator with multilevel composite filter,” Optical Engineering, vol.43, no.8, pp.1759-1766, 2004.
[19] Jiang, X., “A study of fingerprint image filtering,” in Proc. Int. Conf. Image Processing, Thessaloniki, Greece, Oct.7-10, 2001, pp.238-241.
[20] Kaiser, J. K. “Some useful properties of Teager’s energy operators,” in Proc. Int. Conf. Acoustics Speech Signal Processing, Minneapolis, MN, Apr.27-30, 1993, pp.149-152.
[21] Kaiser, J. K., “On a simple algorithm to calculate the ‘energy’ of a signal,” in Proc. Int. Conf. Acoustics Speech Signal Processing, Albuquerque, NM, Apr.3-6, 1990, pp.381-384.
[22] Kaymaz, E. and S. Mitra, “Analysis and matching of degraded and noisy fingerprints,” in Proc. SPIE, 1992, vol.1771, pp. 498-509.
[23] Kim, B. G. and D. J. Park, “Adaptive image normalisation based on block processing for enhancement of fingerprint image,” Electronic Letters, vol.38, no.14, pp.696-698, 2002.
[24] Lee, H. C. and R. E. Gaensslen, eds., Advances in Fingerprint Technology, 2nd Ed., CRC Press, Boca Raton, FL, 2001.
[25] Li, B., “The research on image enhancement of low-quality fingerprint image,” in Proc. SPIE, 2006, vol.6027, pp.1-11.
[26] Liu, Y., S. Yuan, and X, Zhu, “A time-frequency field fingerprint enhancement technology and three-order spline curve fitting matching algorithm research,” in Proc. Instrumentation and Measurement Technology Conf., Vail, CO, May.20-22, 2003, pp.1067-1069.
[27] Maio, D. and D. Maltoni, “Direct gray-scale minutiae detection in fingerprints,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.19, no.1, pp.27-40, 1997.
[28] Maio, D., R. Cappelli, and A. K. Jain, “FVC2000: Finger verification competion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.24, no.3, pp 402-412, 2002.
[29] Maltoni, Davie, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition, Springer, New York, 2003.
[30] Mehtre, B. M., “Fingerprint image analysis for automatic identification,” Machine Vision and Applications, vol.6, no.2, pp.124-139, 1993.
[31] Mitra, S. K., H. Li, I. S. Ling, and T. H. Yu, “A new class of nonlinear filters for image enhancement,” in Proc. Int. Conf. Acoustics Speech Signal Processing, Toronto, Canada, May 14-17, 1991, pp.2525-2528.
[32] O’Gorman, L. and J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recognition, vol.22, no.1, pp.29-38, 1989.
[33] Pradenas, R., “Directional enhancement in the frequency domain of fingerprint images,” in Proc. SPIE, 1997, vol.2932, pp.150-160.
[34] Qi, J., Z, Shi, X, Zhao, and Y., Wang, “Measuring fingerprint image quality using gradient,” in Proc. SPIE, 2005, vol.5779, pp.455-459.
[35] Sherlock, B. G., D. M. Monro, and K. Millard, “Fingerprint enhancement by directional Fourier filtering,” IEE Proc. Visual Image Signal Process, vol.141, no.2, pp.87-94, 1994.
[36] Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, eds., Wavelets for Computer Graphics, Morgan Kaufmann, San Francisco, 1996.
[37] Tahmasebi, A. M. and S. Kasaei, “A novel adaptive approach to fingerprint enhancement filter design,” Signal Processing: Image Communication, vol.17, pp.849-855, 2002.
[38] Teng, Y. C., Remote-sensing Image Processing and Recognition Using Wavelet Transform and Hausdorff Distance, Master Thesis, Department of Computer Science and Information Engineering, National Central University, Chung-li, Taiwan, 2002.
[39] Thai, R., Fingerprint Image Enhancement and Minutiae Extraction, Technical Report, School of Computer and Software Engineering, University of Western Australia, Perth, 2003.
[40] Wang, S. and Y. Wang, “Fingerprint enhancement in the singular point area,” IEEE Signal Processing Letters, vol.11, no.1, pp.16-19, 2004.
[41] Wen, C. Y and C. C. Yu, “Fingerprint pattern restoration by digital image processing techniques,” Journal of Forensic Science, vol.48, no.5, pp.1-12, 2003.
[42] Wu, C., Z. Shi, and V. Govindaraju, “Fingerprint image enhancement method using directional median filter,” in Proc. SPIE, 2004, vol.5404, pp. 66-75.
[43] Yang, J., L. Liu, T. Jiang, and Y. Fan, “A modified Gabor filter design method for fingerprint image enhancement,” Pattern Recognition Letters, vol. 24, pp.1805-1817, 2003.
[44] Zhang, W. and Y. Wang, “Fingerprint image enhancement algorithm based on AM-FM model,” in Proc. SPIE, 2002, vol.4875, pp.731-736.
[45] Zhang, W. P., Q. R. Wang, and Y. Y. Tang, “A wavelet-based method for fingerprint image enhancement,” in Proc. 1st Int. Conf. Machine Learning Cybernetics, Beijing, China, Nov.4-5, 2002, pp.1973-1977.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明