博碩士論文 107522058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.138.126.51
姓名 邱威誠(Wei-Cheng Chiu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用歌手辨識及情感分析於目標情感偵測與分析之研究
(Joint Learning of Aspect-level Sentiment Analysis and Singer Name Recognition from Social Networks)
相關論文
★ 行程邀約郵件的辨識與不規則時間擷取之研究★ NCUFree校園無線網路平台設計及應用服務開發
★ 網際網路半結構性資料擷取系統之設計與實作★ 非簡單瀏覽路徑之探勘與應用
★ 遞增資料關聯式規則探勘之改進★ 應用卡方獨立性檢定於關連式分類問題
★ 中文資料擷取系統之設計與研究★ 非數值型資料視覺化與兼具主客觀的分群
★ 關聯性字組在文件摘要上的探討★ 淨化網頁:網頁區塊化以及資料區域擷取
★ 問題答覆系統使用語句分類排序方式之設計與研究★ 時序資料庫中緊密頻繁連續事件型樣之有效探勘
★ 星狀座標之軸排列於群聚視覺化之應用★ 由瀏覽歷程自動產生網頁抓取程式之研究
★ 動態網頁之樣版與資料分析研究★ 同性質網頁資料整合之自動化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 網路聲量偵測是在市場調查時常使用的手法之一,常見手法是將某些事物被提及的次數作為熱門預測的指標。然而,只利用提及次數很難給予被提及的事物正確的評價;是否熱門往往牽扯到對於該事物的評價,因此本論文希望從社群網路的資料中找出目標事物的同時,判斷評論者對於目標的評價。

本論文主要使用多任務學習模型架構 (Multi-task Learning, MTL) 去進行模型上的設計,分別針對中文藝人的命名實體辨識(Singer Name Recognition, NER)和運用基於面向的情感分析(Aspect-Based Sentiment Analysis, ABSA),針對目標做情感分析兩個任務去做研究。在NER任務中,利用多任務學習架構去取代常見的條件隨機域層 (conditional random field, CRF) , 並在訓練資料中加入中文斷詞的資訊入中文分詞的相關資訊,讓模型在使用字向量的同時也能學習到詞方面的訊息,借此提升NER斷詞的準確度。在ABSA的任務中,我們在上一個NER預測模型的架構上,再加入情感判斷的任務,希望模型能在NER擷取同時做到目標的情感判斷。

本研究使用的資料為利用客製化爬蟲程式從社群網站上擷取之文章作為訓練資料,測試資料同樣從社群網站上隨機挑選文章,作為基準效能以評估模型之效能。實驗結果顯示,在NER階段,我們的藝人辨識模型在擷取未知藝人(OOV)效能達60%的Recall及50%的F1。在目標情續分析的任務中,我們延續 NER 階段所使用的模型架構,並在其架構上加入目標情緒分析任務做多任務學習,希望模型在找出目標實體的同時,給予目標實體情緒標記,而實驗結果顯示,在 NER 的結果中 F1 達到 88% 的,而目標情緒的部分有 56% 的 F1。
摘要(英) Network mentions is one of the methods commonly used in market research. The common method is to use the number of times certain things are mentioned as indicators of popular predictions. However, it is difficult to give the correct evaluation of popularity of the target entities only by the number of mentions; whether it is popular often involves the evaluation of the thing, so this paper hopes to find the target entities from the data of the social network and judge Commenter′s evaluation of the goal.

This paper mainly uses the multi-task learning model architecture (Multi-task Learning, MTL) to design the model, respectively for the name entity recognition of Chinese artists (Singer Name Recognition, NER) and the use of aspect-based sentiment analysis (Aspect-Based Sentiment Analysis, ABSA), to do two tasks of sentiment analysis to the target to do research. In the NER task, we use a multi-task learning architecture to replace the common conditional random field (CRF), and add chinese word segmentation information into the training data. So that the model can learn word information by using word segmentation, and improving performance of the precision of NER. In the task of ABSA, we add the task of sentiment analysis to the architecture of the previous NER prediction model. We hope that the model can judge the sentiment toward the target which is extracted by NER model.

The data used in this study retrieve from the community website using the customized crawler program as training data, and the test data is also randomly selected from the community website as the benchmark performance to evaluate the performance of the model. The experimental results show that in the NER stage, our artist identification model captures 60% of Recall and 50% of F1 of unknown artists (OOV). In the task of target sentiment analysis, we continue the model architecture used in the NER stage, and add target sentiment analysis tasks to its architecture to do multi-task learning, hoping that the model will give the target entity emotional markers while finding the target entity. The experimental results show that in the NER results, F1 reaches 88%, and the target emotion part is 56% F1.
關鍵字(中) ★ 深度學習
★ 多任務共同訓練架構
★ 自注意力機制
★ 門控機制
★ 向編碼變形器
★ 命名實體辨識
★ 目標情緒分析
關鍵字(英) ★ Deep Learning
★ Multi-task Learning
★ Attention
★ Gating Mechanism
★ BERT
★ Name Entity Recognition
★ Aspect-Based Sentiment Analysis
論文目次 中文摘要...i
英文摘要...ii
目錄...iv
圖目錄...v
表目錄...vi
一、簡介...1
二、相關研究...4
三、命名實體辨識...10
3.1 資料分析與資料集...10
3.2 方法與模型...10
3.3 實驗與系統效能...13
3.3.1 標記策略...13
3.3.2 中文段慈改善以及模型架構的調整...14
3.4 小結...16
四、目標情緒分析...17
4.1 資料準備與資料集...17
4.2 ABSA模型架構...18
4.3 實驗...20
4.4 小結...24
五、結論與未來展望...26
參考文獻...28
參考文獻 [1] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multipletask sampling. InMachine Learning, pages 7–39, 1997.
[2] Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, and Shengping Liu. Adversarial transferlearning for Chinese named entity recognition with self-attention mechanism. InProceed-ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages182–192, Brussels, Belgium, October-November 2018. Association for Computational Lin-guistics.
[3] Richard Caruana. Multitask learning: A knowledge-based source of inductive bias. InProceedings of the Tenth International Conference on Machine Learning, pages 41–48.Morgan Kaufmann, 1993.
[4] Jason P.C. Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-cnns.Transactions of the Association for Computational Linguistics, 4:357–370, 2016.
[5] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, andPavel P. Kuksa. Natural language processing (almost) from scratch.CoRR, abs/1103.0398,2011.
[6] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modelingwith gated convolutional networks.CoRR, abs/1612.08083, 2016.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-trainingof deep bidirectional transformers for language understanding.CoRR, abs/1810.04805,2018.
[8] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing:Cross-lingual parameter sharing in a neural network parser. InProceedings of the 53rdAnnual Meeting of the Association for Computational Linguistics and the 7th InternationalJoint Conference on Natural Language Processing (Volume 2: Short Papers), pages 845–850, Beijing, China, July 2015. Association for Computational Linguistics.
[9] Yoshua Bengio Dzmitry Bahdanau, Kyunghyun Cho. Neural machine translation by jointlylearning to align and translate.CoRR, 2016.
[10] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An interactive multi-tasklearning network for end-to-end aspect-based sentiment analysis.CoRR, abs/1906.06906,2019.
[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.Neural Computation,9(8):1735–1780, 1997.
[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.Neural Computation,9(8):1735–1780, 1997.
[13] Binxuan Huang, Yanglan Ou, and Kathleen M. Carley. Aspect level sentiment classificationwith attention-over-attention neural networks.CoRR, abs/1804.06536, 2018.
[14] Lun-Wei Ku and Hsin-Hsi Chen. Mining opinions from the web: Beyond relevance retrieval.Journal of the American Society for Information Science and Technology, 58(12):1838–1850, 2007.
[15]Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, andChris Dyer. Neural architectures for named entity recognition.CoRR, abs/1603.01360,2016.
[16] Peng-Hsuan Li, Tsu-Jui Fu, and Wei-Yun Ma. Why attention? analyze bilstm deficiencyand its remedies in the case of ner, 2019.
[17]Mei-Juen Liu and Hui-Li Xu. (the processing of Chinese verbs: a comparison of the CKIPclassification and the Chinese verb dictionary) [in Chinese]. InProceedings of RoclingVII Computational Linguistics Conference VII, pages 91–110, Hsinchu, Taiwan, August1994. The Association for Computational Linguistics and Chinese Language Processing(ACLCLP).
[18]Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu. Recurrent modelsof visual attention. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.Weinberger, editors,Advances in Neural Information Processing Systems 27, pages 2204–2212. Curran Associates, Inc., 2014.
[19]Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R. Voss, and Jiawei Han. Auto-mated phrase mining from massive text corpora.CoRR, abs/1702.04457, 2017.
[20]Jingbo Shang, Liyuan Liu, Xiang Ren, Xiaotao Gu, Teng Ren, and Jiawei Han. Learningnamed entity tagger using domain-specific dictionary.CoRR, abs/1809.03599, 2018.
[21]Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.CoRR, abs/1505.00387, 2015.
[22]Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.CoRR,abs/1706.03762, 2017.
[23]Fangzhao Wu, Junxin Liu, Chuhan Wu, Yongfeng Huang, and Xing Xie. Neural chinesenamed entity recognition via CNN-LSTM-CRF and joint training with word segmentation.CoRR, abs/1905.01964, 2019.
[24]Wei Xue and Tao Li. Aspect based sentiment analysis with gated convolutional networks.InProceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers), pages 2514–2523, Melbourne, Australia, July 2018. Associationfor Computational Linguistics.
[25]Yongxin Yang and Timothy M. Hospedales. Trace norm regularised deep multi-task learn-ing.CoRR, abs/1606.04038, 2016.
[26]Da Yin, Xiao Liu, and Xiaojun Wan. Interactive multi-grained joint model for targetedsentiment analysis. InCIKM ’19, 2019.
[27]Da Yin, Xiao Liu, and Xiaojun Wan. Interactive multi-grained joint model for targetedsentiment analysis. InProceedings of the 28th ACM International Conference on Informa-tion and Knowledge Management, CIKM ’19, page 1031–1040, New York, NY, USA, 2019.Association for Computing Machinery.
[28]Yue Zhang and Jie Yang. Chinese ner using lattice lstm. 2018.
[29]黎桂如and Gui-Ru Li.應用歌手辨識及角色標注於輿情意見目標分析之研究. 2019.
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明