摘要(英) |
The number of passengers at Taoyuan International Airport is increasing year by year, and has already exceeded the limit of the capacity in the original design. Under the limited available number of check-in counters, it is important that how airlines would allocate the counters to achieve the optimal use and perform the passenger check-in process more smoothly. In the past research, it has been pointed out that there is a significant relationship among the counter assignment pattern, the operating cost, and the self-check-in usage rate. This study will further investigate the use of association rule mining methods to conduct experimental analysis, and find out the implicit association rules based on the self-check-in utilization rate. It leads that we may be able to use the rules and the statistics to configure the moving lines at the airline planning counters to provide passengers with more optimized check-in environments and convenient experiences. Therefore, the passenger satisfaction would be improved.
This thesis uses a local airline as an example to analyze its historical flight self- check-in data. The data were collected from 2017 to 2018, and are divided into two sets of Terminal one and Terminal two. In addition, one set is constructed by merging the two data sets. Therefore, three data sets in total were used to be analyzed by using association rules algorithms, Apriori and FP-Growth. The experiments were conducted by Weka 3.8.3. and the data exploration technology was employed to perform the correlation analysis between passenger numbers, flight attributes, destinations, and time zones. The experimental results indicate that the self-check-in usage rates of the passengers in the “Hong Kong route” and the “Japan route” are higher than that of the average; the cases of “aircraft type is 738”, “Mainland China route”, and “Americans route” have the lower self-check-in usage rates than that of the average. The association rules produced based on the experimental analysis are meaningful and worthy of reference for the configuration planning. With the help of the self-reported data in the past, the understanding of the variable factors along with their relationship can be achieved and it provides the valuable reference for the airport and the airlines to configure the number of counters along with the line planning and the manpower utilization. |
參考文獻 |
【中文文獻】
牛莒淵(2016)。機場共用櫃檯分配因素分析。開南大學觀光運輸學院碩士論文,桃園縣。
王信翔(2009)。航空站共用櫃檯營運模式之研究-以桃園國際機場第二航廈為例。長榮大學航運管理研究所碩士論文,台南市。
江明哲(2015)。資料探勘技術應用於航空業航班延誤分析-以C公司為例。
國立中央大學資訊管理學系碩士論文,桃園縣。
呂錦隆、凌珮娟(2009)。國籍旅客對國際航線自助報到服務之使用意圖研究,運輸學刊,第二十一卷(3):頁299-328,台北市。
李美鈴(2011)。桃園國際機場航空旅客自助報到系統使用滿意度之研究。
開南大學空運管理學系碩士論文,桃園縣。
沈雅云(2018)。桃園機場自助報到服務之使用人數預估研究-以C航空公司為例。中華大學運輸科技與物流管理學系碩士論文,新竹市。
林志鎧(2018)。保險業的資料探勘應用—壽險高潛力客戶。國立中央大學資訊管理學系碩士論文,桃園縣。
林嫣妮(2008)。航空站共用櫃檯模式之研究-以高雄國際小港機場國內航站為例。長榮大學航運管理學系碩士班碩士論文,台南市。
袁梅宇(2016)。王者歸來:WEKA機器學習與大數據聖經(第三版),佳魁資訊,台北市。
高毓萱(2020)。運用關聯規則技術挖掘糖尿病患者血糖控制規則-以某區域教學醫院為例。國立中正大學資訊管理系醫療資訊管理研究所碩士論文,嘉義縣。
張云濤,龔玲(2019)。資料探勘原理與技術(初版),前程文化,台北市。
陳書萱(2016)。影響旅遊者使用自助服務科技的因素。大同大學事業經營學系(所)碩士論文,台北市。
黃寶慶(2019)。以關聯規則探勘為基礎,探討詐騙車手提領型態互動之研究。
國立中央大學資訊管理學系碩士論文,桃園縣。
楊佩殷(2018)。資料探勘應用於B2B網路型態之企業官網研究-以T公司為例。國立中央大學資訊管理學系碩士論文,桃園縣。
鄭宛倫(2018)。以關聯規則分析探討癲癇病人藥物使用與新發生糖尿病風險之關聯性。國立中正大學資訊管理系醫療資訊管理研究所碩士論文,嘉義縣。
簡禎富,許嘉裕(2019)。資料挖礦與大數據分析(第二版),前程文化,台北市。
臺灣桃園國際機場,107年度年報。2020.3.20 ,取自:
https://www.taoyuanairport.com.tw/
【英文文獻】
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proc. the 1993 ACM SIGMOD International Conference on Management of Data, 207-216.
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. International Conference on Very Large Data Bases, 487-499.
Araujo, G. E., and Repolho, H. M., (2015). Optimizing the airport check-in counter allocation problem. Journal of Transport Literature, 9(4), 15-19.
Bruno, G., Diglio, A., Genovese, A., & Piccolo, C. (2019). A decision support system to improve performances of airport check-in services. Soft Computing, 23(9), 2877-2886.
Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In Machine Learning Proceedings 1995, (pp. 194-202):Elsevier.
Erpolat, S., (2012). Comparison of Apriori and FP-growth algorithms on determination of association rules in authorized automobile service centres. Anadolu University, Journal of Social Sciences, 12(2), 137-146.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth P. (1996). From data mining to knowledge discovery an overview.In advances in Knowledge Discovery and Data Mining, 39(11), 471-493.
Fournier‐Viger, P., Lin, J.C.W, Vo, B., Chi, T. T., Zhang, J., and Le, H. B., (2017). A survey of itemset mining, Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 7(4), e1207.
Han, J., Pei, J., and Yin, Y., (2010). Mining frequent patterns without candidate generation, ACM sigmod record, 29(2), 1-12.
Heaton, J., (2016). Comparing dataset characteristics that favor the Apriori Eclat or FP-Growth frequent itemset mining algorithms, IEEE SECON.
IATA. Fast Travel Program. Retrieved from https://www.iata.org/en/programs/passenger/fast-travel/ (May 20,2020)
Meuter, Matthew L., Amy L. Ostrom , Robert I. Roundtree , and Mary Jo Bitner , (2000). Self-Service Technologies: Understanding Consumer Satisfaction With Technology-Based Service Encounters. Journal of Marketing, 64(3), 50-64.
Singh, R., Chaudhary, s., (2012). Data Mining Approach Using Apriori Algorithm: The Review. Journal of Electronics and Communication Engineering, 4(2), 12-15. |