參考文獻 |
[1] Xiao, P. (2019). Practical Java Programming for IoT, AI, and Blockchain. John Wiley & Sons.
[2] Anderson, M., & Jiang, J. (2018). Teens, social media & technology 2018. Pew Research Center, 31, 2018.
[3] Farid, H. (2008). Digital image forensics. Scientific American, 298(6), 66-71.
[4] Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36.
[5] Salloum, R., Ren, Y., & Kuo, C. C. J. (2018). Image splicing localization using a multi-task fully convolutional network (MFCN). Journal of Visual Communication and Image Representation, 51, 201-209.
[6] Huh, M., Liu, A., Owens, A., & Efros, A. A. (2018). Fighting fake news: Image splice detection via learned self-consistency. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 101-117).
[7] Mayer, O., & Stamm, M. C. (2018, April). Learned forensic source similarity for unknown camera models. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2012-2016). IEEE.
[8] Liu, Q. (2011, November). Detection of misaligned cropping and recompression with the same quantization matrix and relevant forgery. In Proceedings of the 3rd international ACM workshop on Multimedia in forensics and intelligence (pp. 25-30). ACM.
[9] Huang, F., Huang, J., & Shi, Y. Q. (2010). Detecting double JPEG compression with the same quantization matrix. IEEE Transactions on Information Forensics and Security, 5(4), 848-856.
[10] Popescu, A. C., & Farid, H. (2005). Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on signal processing, 53(2), 758-767.
[11] Swaminathan, A., Wu, M., & Liu, K. R. (2008). Digital image forensics via intrinsic fingerprints. IEEE transactions on information forensics and security, 3(1), 101-117.
[12] Fu, D., Shi, Y. Q., & Su, W. (2007, February). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. In Security, Steganography, and Watermarking of Multimedia Contents IX (Vol. 6505, p. 65051L). International Society for Optics and Photonics.
[13] Huang, Y., Lu, W., Sun, W., & Long, D. (2011). Improved DCT-based detection of copy-move forgery in images. Forensic science international, 206(1-3), 178-184.
[14] Fan, Z., & De Queiroz, R. L. (2003). Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Transactions on Image Processing, 12(2), 230-235.
[15] Johnson, M. K., & Farid, H. (2007). Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security, 2(3), 450-461.
[16] Johnson, M. K., & Farid, H. (2007, June). Exposing digital forgeries through specular highlights on the eye. In International Workshop on Information Hiding (pp. 311-325). Springer, Berlin, Heidelberg.
[17] Zhang, W., Cao, X., Zhang, J., Zhu, J., & Wang, P. (2009, June). Detecting photographic composites using shadows. In 2009 IEEE International Conference on Multimedia and Expo (pp. 1042-1045). IEEE.
[18] Lukáš, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214.
[19] Chen, M., Fridrich, J., Goljan, M., & Lukás, J. (2008). Determining image origin and integrity using sensor noise. IEEE Transactions on information forensics and security, 3(1), 74-90.
[20] Filler, T., Fridrich, J., & Goljan, M. (2008, October). Using sensor pattern noise for camera model identification. In 2008 15th IEEE International Conference on Image Processing (pp. 1296-1299). IEEE.
[21] Swaminathan, A., Wu, M., & Liu, K. R. (2007). Nonintrusive component forensics of visual sensors using output images. IEEE Transactions on Information Forensics and Security, 2(1), 91-106.
[22] Cao, H., & Kot, A. C. (2009). Accurate detection of demosaicing regularity for digital image forensics. IEEE Transactions on Information Forensics and Security, 4(4), 899-910.
[23] Chen, C., & Stamm, M. C. (2015, November). Camera model identification framework using an ensemble of demosaicing features. In 2015 IEEE International Workshop on Information Forensics and Security (WIFS) (pp. 1-6). IEEE.
[24] Ojala, T., Pietikainen, M., & Harwood, D. (1994, October). Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of 12th International Conference on Pattern Recognition (Vol. 1, pp. 582-585). IEEE.
[25] Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, (7), 971-987.
[26] Xu, G., & Shi, Y. Q. (2012, July). Camera model identification using local binary patterns. In 2012 IEEE International Conference on Multimedia and Expo (pp. 392-397). IEEE.
[27] MacEvoy B. (2013). Astronomical Optics. Retrieved May 3, 2018, from https://www.handprint.com/ASTRO/ae4.html
[28] Johnson, M. K., & Farid, H. (2006, September). Exposing digital forgeries through chromatic aberration. In Proceedings of the 8th workshop on Multimedia and security (pp. 48-55). ACM.
[29] Van, L. T., Emmanuel, S., & Kankanhalli, M. S. (2007, July). Identifying source cell phone using chromatic aberration. In 2007 IEEE International Conference on Multimedia and Expo (pp. 883-886). IEEE.
[30] Tuama, A., Comby, F., & Chaumont, M. (2016, December). Camera model identification with the use of deep convolutional neural networks. In 2016 IEEE International workshop on information forensics and security (WIFS) (pp. 1-6). IEEE.
[31] Chen, J., Kang, X., Liu, Y., & Wang, Z. J. (2015). Median filtering forensics based on convolutional neural networks. IEEE Signal Processing Letters, 22(11), 1849-1853.
[32] Bayar, B., & Stamm, M. C. (2016, June). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10).
[33] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1994). Signature verification using a" siamese" time delay neural network. In Advances in neural information processing systems (pp. 737-744).
[34] Neculoiu, P., Versteegh, M., & Rotaru, M. (2016, August). Learning text similarity with siamese recurrent networks. In Proceedings of the 1st Workshop on Representation Learning for NLP (pp. 148-157).
[35] Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with siamese region proposal network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8971-8980).
[36] Hadsell, R., Chopra, S., & LeCun, Y. (2006, June). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′06) (Vol. 2, pp. 1735-1742). IEEE.
[37] Rother, C., Kolmogorov, V., & Blake, A. (2004). " GrabCut" interactive foreground extraction using iterated graph cuts. ACM transactions on graphics (TOG), 23(3), 309-314.
[38] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612.
[39] Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
[40] Dai, J., He, K., & Sun, J. (2015). Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1635-1643).
[41] Lin, D., Dai, J., Jia, J., He, K., & Sun, J. (2016). Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3159-3167).
[42] Maninis, K. K., Caelles, S., Pont-Tuset, J., & Van Gool, L. (2018). Deep extreme cut: From extreme points to object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 616-625).
[43] Boykov, Y. Y., & Jolly, M. P. (2001, July). Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings eighth IEEE international conference on computer vision. ICCV 2001 (Vol. 1, pp. 105-112). IEEE.
[44] Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on pattern analysis and machine intelligence, 26(9), 1124-1137.
[45] Shullani, D., Fontani, M., Iuliani, M., Al Shaya, O., & Piva, A. (2017). Vision: a video and image dataset for source identification. EURASIP Journal on Information Security, 2017(1), 15.
[46] IEEE Signal Processing Society (2017, December). IEEE′s Signal Processing Society - Camera Model Identification. Retrieved February 02, 2018 from https://www.kaggle.com/c/sp-society-camera-model-identification
[47] Gloe, T., & Böhme, R. (2010, March). The′Dresden Image Database′for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1584-1590). Acm.
[48] De Carvalho, T. J., Riess, C., Angelopoulou, E., Pedrini, H., & de Rezende Rocha, A. (2013). Exposing digital image forgeries by illumination color classification. IEEE Transactions on Information Forensics and Security, 8(7), 1182-1194.
[49] Jaccard, P. (1912). The distribution of the flora in the alpine zone. 1. New phytologist, 11(2), 37-50.
[50] Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577.
[51] Ye, S., Sun, Q., & Chang, E. C. (2007, July). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In 2007 IEEE International Conference on Multimedia and Expo (pp. 12-15). Ieee.
[52] Mahdian, B., & Saic, S. (2009). Using noise inconsistencies for blind image forensics. Image and Vision Computing, 27(10), 1497-1503.
[53] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).
[54] Reddit.com. (2005). Photoshop battles. Retrieved July 11, 2020, from https://www.reddit.com/r/photoshopbattles/ |