博碩士論文 107522045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.223.209.129
姓名 江明謙(Ming-Chien Chiang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於質譜儀資料使用機器學習辨識克雷伯氏肺炎桿菌之多重抗藥性
(Identification of Multiple Antibiotic Resistance of Klebsiella pneumoniae Based on MALDI-TOF MS by Using Machine Learning)
相關論文
★ 結合多種訊號預處理方法於質譜儀資料以辨識細菌對抗生素之抗藥性★ 利用機器學習預測濁水溪沖積扇區域之地下水位
★ 使用表徵學習和機器學習方法於晶圓線切割機台之異常偵測★ 基於質譜儀資料利用人工智慧方法辨識革蘭氏陰性菌對環丙沙星抗藥性之特徵峰值
★ 應用數位分身於馬達軸承之異常偵測★ 基於光誘導介電泳影像處理檢測流體抗藥性
★ 利用機器學習方法基於多類型地層監測資料預測濁水溪沖積扇地區之地層下陷★ 基於人工智慧模型預測抗菌肽的最小抑菌濃度於特定菌株上
★ 使用語言模型嵌入和不平衡調整之深度學習方 法識別多功能抗菌肽★ 使用權重組合模型預測雲林縣地層下陷
★ 基於深度學習從核醣核酸定序表達譜推斷外周血單核細胞之細胞組成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 克雷伯氏肺炎桿菌(Klebsiella pneumoniae)是一種革蘭氏陰性菌,感染了這種病原體的患者可能會有肺炎、尿路感染和腹腔內感染伴隨嚴重的症狀,因此快速知道可有效治療的藥物是很重要的。近年來,基質輔助雷射脫附電離飛行時間質譜技術(matrix-assisted laser desorption ionization-time of flight mass spectrometry, MALDI-TOF MS)為一種新興的分析微生物的質譜方法,使用此方法可得到其相對應的質譜用來辨識其物種,也有研究用來辨識抗藥性,然而目前仍少有使用大量克雷伯氏肺炎桿菌質譜分析抗藥性的研究。本研究使用了多年來大量在長庚醫院的克雷伯氏肺炎桿菌質譜資料,並針對三種抗生素:環丙沙星(Ciprofloxacin, CIP),頭孢呋辛(Cefuroxime, CXM),頭孢曲松(Ceftriaxone, CRO),以及同時對這三種藥有效和無效的菌株資料集建立機器學習預測其抗藥性。在特徵選取之後,只使用少量的46個特徵峰值在多重抗藥的類別中,得到獨立測試準確率0.7858,其中敏感性和特異性分別為0.7298和0.8127,當中特徵峰值3657、4341、4519、4709、5070、5409、5921、5939和6516 m/z 為辨識有多重抗藥性克雷伯氏肺炎桿菌重要特徵,這些特徵峰值在多重抗藥菌株中皆佔有較高比例的特徵峰值。期望本研究當中的辨識抗藥性模型可提供協助臨床醫生第一時間判斷用藥的輔助參考,也提出相關的重要質譜峰值可供未來進一步實驗探討多重抗藥機制的原因。
摘要(英) Klebsiella pneumoniae (K. pneumoniae) is a kind of gram-negative bacteria. Patients infected with this pathogen might suffer pneumonia, urinary tract infections, and intra-abdominal infections with serious symptoms, such as toxic presentation with sudden onset, high fever, and hemoptysis. Recently, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology for microbial identification. However, there have been less studies using large mass spectra dataset of K. pneumoniae to analyze multiple antibiotic resistance. Thus, we collected lots of mass spectra of K. pneumoniae and considered three antibiotics Ciprofloxacin (CIP), Cefuroxime (CXM), Ceftriaxone (CRO), and multiple antibiotic resistance or susceptibility to the three antibiotics above. After feature selection in prediction models for strains resistant or susceptible to three antibiotics above, the accuracy of independent testing can achieve 0.7858 with sensitivity 0.7289 and specificity 0.8127 using 46 features in combined dataset. The informative peaks 3657, 4341, 4519, 4709, 5070, 5409, 5921, 5939 and 6516 m/z might be the potential features for multiple antibiotic resistant K. pneumoniae and all of these peaks account for higher ratio in the resistant K. pneumoniae than in susceptible K. pneumoniae. We hope that the models for antibiotic resistance can assist doctors to evaluate the use of antibiotic in clinical. The association between resistant mechanism and informative mass spectra also needs to be further studied in the future experiment.
關鍵字(中) ★ 基質輔助雷射脫附電離飛行時間質譜法
★ 克雷伯氏肺炎桿菌
★ 機器學習
★ 多重抗藥性
關鍵字(英) ★ MALDI-TOF MS
★ Klebsiella pneumoniae
★ machine learning
★ multiple antibiotic resistance
論文目次 中文摘要-i
Abstract-ii
致謝-iii
Table of Contents-iv
List of Figures-vi
List of Tables-vii
Chapter 1 Introduction-1
1.1 Background-1
1.2 Related Works-3
1.3 Motivation-5
1.4 Goal-5
Chapter 2 Materials and Methods-6
2.1 Dataset and Preprocessing-6
2.2 Feature Extraction-8
2.3 Machine Learning Models-9
2.3.1 Naïve Bayes (NB)-9
2.3.2 Logistic Regression (LR)-10
2.3.3 Decision Tree (DT)-10
2.3.4 Support Vector Machine (SVM)-11
2.3.5 Random Forest (RF)-12
2.3.6 Extreme Gradient Boosting (XGBoost)-12
2.4 Evaluation Metrics-13
Chapter 3 Results-14
3.1 Dataset by Location-based Split-14
3.2 Kaohsiung Dataset by Time-based Split-14
3.3 Linkou Dataset by Time-based Split-15
3.4 Combined Dataset by Time-based Split-16
3.5 Feature Selection in Combined Dataset by Time-based
Split-16
3.6 Other Feature Sets in Combined Dataset by Time-based
Split-18
Chapter 4 Conclusions-23
References-24
參考文獻 1. Ko, W.C., et al., Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerging Infectious Diseases, 2002. 8(2): p. 160-6.
2. Kim, J., et al., Assessment of antibiotic resistance in Klebsiella pneumoniae exposed to sequential in vitro antibiotic treatments. Annals of Clinical Microbiology and Antimicrobials, 2016. 15(1): p. 60.
3. Gasink, L.B., et al., Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infection Control & Hospital Epidemiology, 2009. 30(12): p. 1180-5.
4. Chiu, S.K., et al., Carbapenem nonsusceptible Klebsiella pneumoniae in Taiwan: dissemination and increasing resistance of carbapenemase producers during 2012–2015. Scientific Reports, 2018. 8(1): p. 8468.
5. Kim, S., et al., PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 2019. 47(D1): p. D1102-9.
6. Rawat, D. and Nair D., Extended-spectrum β-lactamases in Gram negative bacteria. Journal of Global Infectious Diseases, 2010. 2(3): p. 263.
7. Wang, M., et al., Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrobial Agents and Chemotherapy, 2004.48(4): p.1295-9.
8. Paterson, D.L. and Bonomo R.A., Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews, 2005. 18(4): p. 657-86.
9. Khan, Z.A., Siddiqui M.F., and Park S., Current and emerging methods of antibiotic susceptibility testing. Diagnostics, 2019. 9(2): p. 49.
10. Singhal, N., et al., MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 2015. 6: p. 791.
11. Zimmermann, S. and Burckhardt, I., Development and application of MALDI-TOF for detection of resistance mechanisms, MALDI‐TOF and Tandem MS for Clinical Microbiology. 2017. p. 231-48.
12. Angeletti, S., et al., MALDI-TOF mass spectrometry and blakpc gene phylogenetic analysis of an outbreak of carbapenem-resistant K. pneumoniae strains. New Microbiologica, 2015. 38(4): p. 541-50.
13. Flores-Trevino, S., et al., Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Scientific Reports, 2019. 9(1): p. 18945.
14. Rocco, V.G., et al., Rapid identification of carbapenemase-producing Klebsiella pneumoniae strains by matrix-assisted laser desorption/ionization-time of flight using VitekⓇ mass spectrometry system. The Eurasian Journal of Medicine, 2019. 51(3): p. 209-13.
15. Huang, T.S., et al., Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach. PLoS One, 2020. 15(2): p. e0228459.
16. Lau, A.F., et al., A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. Journal of Clinical Microbiology, 2014. 52(8): p. 2804-12.
17. Bar-Meir, M., et al., The utility of MALDI-TOF MS for outbreak investigation in the neonatal intensive care unit. European Journal of Pediatrics, 2020.
18. Chambers, M.C., et al., A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 2012. 30(10): p. 918-20.
19. Gibb, S. and Strimmer K., MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics, 2012. 28(17): p. 2270-1.
20. Botev, Z.I., Grotowski, J.F., and Kroese, D.P., Kernel density estimation via diffusion. The Annals of Statistics, 2010. 38(5): p. 2916-57.
21. Pedregosa, F., et al., Scikit-learn: machine learning in python. Journal of Machine Learning Research, 2011. 12: p. 2825-30.
22. Zhang, H., The optimality of naive Bayes. American Association for Artificial Intelligence, 2004. 1(2): p. 3.
23. Chen, T. and Guestrin, C., XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. p. 785-94.
24. Youden, W.J., Index for rating diagnostic tests. Cancer, 1950. 3(1): p. 32-5.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明