摘要(英) |
With the economic development, the existing road supply is not enough to load the rapid growth of traffic, making traffic congestion a common phenomenon in various cities. However, road supply can’t keep up with the growth rate of transport vehicles, and transportation control has become an effective way to reduce traffic congestion. If we provide accurate travel time estimates to drivers, drivers can choose substitute route to achieve traffic flow distribution and reduce traffic congestion. However, studies on travel time prediction are mostly applied to expressways and few studies related to travel time prediction for urban roads in domestic.
This study proposes a urban road travel time prediction method that use data mining techniques combined with eTag vehicle detectors. By using Weka data e mining software to test nearest neighbor method, support vector regression, multi-layer perceptron, regression tree and random forest etc. algorithms for experimental analysis. Among them, in the past related research, the traffic flow accumulation factor mostly considered only the short-term traffic flow, in this study, we found that if the traffic flow accumulation interval is greatly lengthened, the prediction accuracy can be greatly improved. In addition, this study also found that the traffic volume of large vehicles does have a significant impact on the travel time prediction. This study uses the eTag vehicle detector of the Taoyuan City Government Department of Transportation as the data source, and predicts the travel time of peak hours on weekdays and weekends of the south bound Taoyuan Chunri Road. Based on the actual measurement results, the prediction performance of this research method is a high-precision prediction in the MAPE evaluation standard, which can be effectively applied to urban road vehicle diversion management strategies. |
參考文獻 |
【英文文獻】
1. Yang, Z.X. and Zhu, M.H., “A Dynamic Prediction Model of Real-Time Link Travel Time Based on Traffic Big Data”, 2019 International Conference on Intelligent Transportation, Big Data & Smart City, pp.330-333, 2019.
2. Zhu, G., Song, K. and Zhang, P., “A Travel Time Prediction Method for Urban Road Traffic Sensors Data”, 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, pp.29-32, 2015.
3. Mehran, B. and Kuwahara, M., “Fusion of probe and fixed sensor data for short term traffic prediction in urban signalized arterials”, International Journal of Urban Sciences, Vol. 17, No. 2, pp.163–183, 2013.
4. Song, X.H., et al., “Highway traffic status abstraction via dedicated short range communication on-board units”, Advances in Transportation Studies an international Journal Section A 41, pp.15-24, 2017.
5. Zhu, X., et al., “Multiple-Factor Based Sparse Urban Travel Time Prediction”, MDPI applied sciences, pp.1-18, 2018.
6. Liu, Y., et al., “Short-term travel time prediction by deep learning A comparison of different LSTM-DNN models”, 20th International Conference on Intelligent Transportation Systems, 2017.
7. Siripanpornchana, C., Panichpapiboon, S. and Chaovalit, P., “Travel-time prediction with deep learning”, IEEE Region 10 Conference (TENCON), pp.1859-1862, 2016.
8. Zhang, P. and Qian, Z.S., “User-centric interdependent urban systems Using time-of-day electricity usage data to predict morning roadway congestion”, Transportation Research Part C 92, pp.392-411, 2018.
9. Fayyad, U., Shapiro, G.P. and Smyth, P., “From Data Mining to Knowledge Discovery in Databases”, AI Magazine, Vol. 17, No. 3, pp.37-54, 1996.
10. Frawley, W. J., Paitetsky, S.G. and Matheus, C.J., “Knowledge Discovery in Databases: An Overview”, Communications of the ACM, Vol. 39, pp.1-34, 1996.
11. Tan, P.N., et al., Introduction to Data Mining (2nd Edition), Pearson Inc., 2018.
【中文文獻】
12. 王晉元,陳彥佑(2012),「高速公路中長程旅行時間預測模式之建立與應用報告書」,交通部臺灣區國道高速公路局。
13. 馮道亨等(2015),eTag旅行時間推估探討,中華技術,107期,104~117頁。
14. 王晉元(2009),旅行時間預測初探,中華技術,第83期,124~139頁。
15. 汪進財,邱孟佑(2010),以車流狀態為基礎之高速公路旅行時間預測模式,運輸學刊,第22卷第3期,261~284頁。
16. 陳志華等(2017),深度學習應用於交通旅行時間預測,電工通訊季刊,第3季,92~109頁。
17. 翁慈宗(2009),資料探勘的發展與挑戰,科學發展,第442期,33~34頁。
18. 邱孟佑(2010),以交通狀態為基礎之旅行時間預測,國立交通大學交通運輸研究所博士論文。
19. 劉軒寧(2016),變動k值之k-NN法應用於高速公路旅行時間預測之研究,國立交通大學運輸與物流管理學系碩士論文。
20. 詹凱捷(2017),應用資料探勘技術於市區幹道旅行時間預測,國立臺灣大學土木工程學研究所碩士論文。
21. 陳盈潔(2013),應用交通資料蒐集與發佈設備及資料探勘法協助觀光地區交通管理策略之研究:以桃園大溪老街為例,國立中央大學土木工程學系碩士論文。
22. 吳耿暉(2018),以深度學習預測國道短期旅行時間,國立交通大學資訊科學與工程研究所碩士論文。
23. 梁依儒(2016),利用交通速度偵測數據於高速公路塞車行為之研究,國立中興大學土木工程學系碩士論文。
24. 邱逸彥(2014),利用貝氏理論於旅行時間推估之研究,國立交通大學運輸與物流管理學系碩士論文。
25. 朱志杰(2013),使用車輛偵測器和自動車輛辨識之資料預測高速公路旅行時間,國立交通大學運輸與物流管理學系碩士論文。
26. 蔡昇翰(2006),基於行動定位服務的即時旅行時間知識庫預測系統,國立交通大學資訊科學與工程研究所碩士論文。
27. 袁梅宇(2016),王者歸來:WEKA機器學習與大數據聖經(第三版),佳魁資訊。 |