博碩士論文 107522016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.142.130.242
姓名 周柏翰(Po-Han Chou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 結合多種訊號預處理方法於質譜儀資料以辨識細菌對抗生素之抗藥性
(A Combination of Multiple Data Preprocessing Methods for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry on Identification of Antibiotic Resistance)
相關論文
★ 基於質譜儀資料使用機器學習辨識克雷伯氏肺炎桿菌之多重抗藥性★ 利用機器學習預測濁水溪沖積扇區域之地下水位
★ 使用表徵學習和機器學習方法於晶圓線切割機台之異常偵測★ 基於質譜儀資料利用人工智慧方法辨識革蘭氏陰性菌對環丙沙星抗藥性之特徵峰值
★ 應用數位分身於馬達軸承之異常偵測★ 基於光誘導介電泳影像處理檢測流體抗藥性
★ 利用機器學習方法基於多類型地層監測資料預測濁水溪沖積扇地區之地層下陷★ 基於人工智慧模型預測抗菌肽的最小抑菌濃度於特定菌株上
★ 使用語言模型嵌入和不平衡調整之深度學習方 法識別多功能抗菌肽★ 使用權重組合模型預測雲林縣地層下陷
★ 基於深度學習從核醣核酸定序表達譜推斷外周血單核細胞之細胞組成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 基質輔助雷射脫附電離飛行時間質譜法(Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry,MALDI-TOF MS)被廣泛應用於微生物之鑑定,近年來亦有許多研究用以辨識細菌之抗藥性。為了分辨具有抗藥性之細菌,各種預處理方法被用於找出質譜資料中帶有辨識資訊之特徵峰值;使用不同預處理方法會得到不同資訊,為了獲得更多特徵峰值以提升辨識抗藥性之效能。本研究藉由長庚醫院多年蒐集之Acinetobacter nosocomialis、Acinetobacter baumannii、Enterococcus faecium、Group B Streptococci之質譜資料,結合多種預處理方法並搭配機器學習方法建立快速辨識抗生素耐藥性模型。本研究結合FlexAnalysis (Bruker Daltonics)、MALDIquant(R套件)與基於連續小波轉換方法進行質譜資料預處理,並採用羅吉斯回歸、單純貝氏分類器、隨機森林與支持向量機建構模型,並比較只使用單一種預處理方法與結合多種預處理方法找出之特徵峰值於辨識抗藥性細菌效能之差異。在各個細菌中,結合多種預處理方法提取之特徵搭配隨機森林建構之模型皆有最高準確率;其在獨立測試中的準確率分別為90.96%,84.37%,78.54%,70.12%。藉由特徵選擇亦可從綜合各方法得到的資訊中找出重要的特徵峰值。本研究根據質譜資料所建立之辨識各細菌抗藥模型可及時提供臨床醫師抗生素之相關資訊,而特徵峰值亦可供未來關於辨識細菌之抗藥性研究參考。
摘要(英) Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in the identification of microorganisms and applied for the prediction of antibiotic resistance in recent years. In order to distinguish antibiotic resistant bacteria, various preprocessing methods are used to find informative peaks from the MS data. Using different preprocessing methods will get different information. Get more informative peaks from spectra to promote the performance on identification of antibiotic resistance. In this study, we combine multiple preprocessing methods, FlexAnalysis (Bruker Daltonics), MALDIquant (R package), and continuous wavelet transform-based method, to detect peaks and build machine learning classifiers, logistic regressions, naïve Bayes classifiers, random forests and support vector machine, to identify antibiotic resistance for Acinetobacter nosocomialis, Acinetobacter baumannii, Enterococcus faecium, Group B Streptococci based on the MS data provided by Chang Gung Memorial Hospital. Meanwhile, the combined method will be compared with the individual method. The random forest with the combined methods have the highest accuracy and achieve 90.96%, 84.37%, 78.54% and 70.12% accuracy on independent test respectively. Through feature selection, important peaks about antibiotic resistance could be found from the integrated information. The prediction model can provide an opinion for clinicians, and the informative peak can provide a reference for further research.
關鍵字(中) ★ 基質輔助雷射脫附電離飛行時間質譜法
★ 機器學習
★ 抗生素抗藥性
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Related Works 2
1.3 Motivation 3
1.4 Goal 3
Chapter 2 Materials and Methods 4
2.1 Bacterial Isolates 4
2.2 MALDI-TOF MS 5
2.3 Signal Preprocessing 6
2.3.1 FlexAnalysis 6
2.3.2 MALDIquant 6
2.3.3 Continuous Wavelet Transform-based Method 6
2.3.4 Strategy of a Combination of Multiple Methods 7
2.4 Feature Extraction 7
2.4.1 Common Peaks 8
2.4.2 Kernel Density Estimation 8
2.4.3 Alignment and Featurization 8
2.4.4 Feature Selection 9
2.5 Machine Learning Models 9
2.5.1 Logistic Regression 9
2.5.2 Naïve Bayes Classifier 10
2.5.3 Random Forest 10
2.5.4 Support Vector Machine 11
2.6 Evaluation Metrics 11
Chapter 3 Results 13
3.1 Data Overview 13
3.1.1 Peak Counts 13
3.1.2 Distribution of Benchmark Peaks 15
3.2 Performances of Models 18
3.3 Feature Selection on Random Forest 20
Chapter 4 Discussions and Conclusions 27
References 28
參考文獻 1. Vrioni, G., et al., MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Annals of translational medicine, 2018. 6(12).
2. Stępień-Pyśniak, D., et al., MALDI-TOF mass spectrometry as a useful tool for identification of Enterococcus spp. from wild birds and differentiation of closely related species. J microbiol biotechnol, 2017. 27(6): p. 1128-1137.
3. Chang, K.-C., et al., Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of microbiological methods, 2018. 147: p. 36-42.
4. Croxatto, A., G. Prod′hom, and G. Greub, Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews, 2012. 36(2): p. 380-407.
5. Wang, H.-Y., et al., Rapid classification of group B Streptococcus serotypes based on matrix-assisted laser desorption ionization-time of flight mass spectrometry and machine learning techniques. BMC bioinformatics, 2019. 20(19): p. 703.
6. Li, M., et al., Rapid antimicrobial susceptibility testing by matrix-assisted laser desorption ionization–time of flight mass spectrometry using a qualitative method in Acinetobacter baumannii complex. Journal of microbiological methods, 2018. 153: p. 60-65.
7. Chung, C.-R., et al., Incorporating statistical test and machine intelligence into strain typing of Staphylococcus haemolyticus based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Frontiers in microbiology, 2019. 10(2120).
8. He, Z., R.Z. Qi, and W. Yu, Bioinformatic analysis of data generated from MALDI mass spectrometry for biomarker discovery, in Applications of MALDI-TOF spectroscopy. 2012, Springer. p. 193-209.
9. Gibb, S. and K. Strimmer, MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics, 2012. 28(17): p. 2270-2271.
10. Sousa, C., et al., MALDI-TOF MS and chemometric based identification of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species. International journal of medical microbiology, 2014. 304(5-6): p. 669-677.
11. Du, P., W.A. Kibbe, and S.M. Lin, Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 2006. 22(17): p. 2059-2065.
12. Zhang, Z.-M., et al., Multiscale peak detection in wavelet space. Analyst, 2015. 140(23): p. 7955-7964.
13. Yang, C., Z. He, and W. Yu, Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC bioinformatics, 2009. 10(1): p. 4.
14. Cohen, A., C. Messaoudi, and H. Badir, A new wavelet-based approach for mass spectrometry data classification, in New frontiers of biostatistics and bioinformatics. 2018, Springer. p. 175-189.
15. Nguyen, T., et al., Mass spectrometry cancer data classification using wavelets and genetic algorithm. FEBS letters, 2015. 589(24): p. 3879-3886.
16. Wang, H.-Y., et al., Rapid detection of heterogeneous vancomycin-intermediate Staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: using a machine learning approach and unbiased validation. Frontiers in Microbiology, 2018. 9(2393).
17. Tang, W., et al., MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. Plos one, 2019. 14(6): p. e0218951.
18. Huang, T.-S., et al., Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach. Plos one, 2020. 15(2): p. e0228459.
19. Chambers, M.C., et al., A cross-platform toolkit for mass spectrometry and proteomics. Nature biotechnology, 2012. 30(10): p. 918-920.
20. Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 2020. 17(3): p. 261-272.
21. Wang, H.-Y., et al., Rapidly predicting vancomycin resistance of Enterococcus faecium through MALDI-TOF MS spectrum obtained in real-world clinical microbiology laboratory. bioRxiv, 2020.
22. Botev, Z.I., J.F. Grotowski, and D.P. Kroese, Kernel density estimation via diffusion. The annals of Statistics, 2010. 38(5): p. 2916-2957.
23. Tuv, E., A. Borisov, and K. Torkkola. Feature selection using ensemble based ranking against artificial contrasts. in The 2006 IEEE international joint conference on neural network proceedings. 2006. p. 2181-2186.
24. Geurts, P., D. Ernst, and L. Wehenkel, Extremely randomized trees. Machine learning, 2006. 63(1): p. 3-42.
25. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of machine learning research, 2011. 12(Oct): p. 2825-2830.
26. Schisterman, E.F., et al., Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology, 2005: p. 73-81.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明