參考文獻 |
1. Vrioni, G., et al., MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Annals of translational medicine, 2018. 6(12).
2. Stępień-Pyśniak, D., et al., MALDI-TOF mass spectrometry as a useful tool for identification of Enterococcus spp. from wild birds and differentiation of closely related species. J microbiol biotechnol, 2017. 27(6): p. 1128-1137.
3. Chang, K.-C., et al., Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of microbiological methods, 2018. 147: p. 36-42.
4. Croxatto, A., G. Prod′hom, and G. Greub, Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews, 2012. 36(2): p. 380-407.
5. Wang, H.-Y., et al., Rapid classification of group B Streptococcus serotypes based on matrix-assisted laser desorption ionization-time of flight mass spectrometry and machine learning techniques. BMC bioinformatics, 2019. 20(19): p. 703.
6. Li, M., et al., Rapid antimicrobial susceptibility testing by matrix-assisted laser desorption ionization–time of flight mass spectrometry using a qualitative method in Acinetobacter baumannii complex. Journal of microbiological methods, 2018. 153: p. 60-65.
7. Chung, C.-R., et al., Incorporating statistical test and machine intelligence into strain typing of Staphylococcus haemolyticus based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Frontiers in microbiology, 2019. 10(2120).
8. He, Z., R.Z. Qi, and W. Yu, Bioinformatic analysis of data generated from MALDI mass spectrometry for biomarker discovery, in Applications of MALDI-TOF spectroscopy. 2012, Springer. p. 193-209.
9. Gibb, S. and K. Strimmer, MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics, 2012. 28(17): p. 2270-2271.
10. Sousa, C., et al., MALDI-TOF MS and chemometric based identification of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species. International journal of medical microbiology, 2014. 304(5-6): p. 669-677.
11. Du, P., W.A. Kibbe, and S.M. Lin, Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 2006. 22(17): p. 2059-2065.
12. Zhang, Z.-M., et al., Multiscale peak detection in wavelet space. Analyst, 2015. 140(23): p. 7955-7964.
13. Yang, C., Z. He, and W. Yu, Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC bioinformatics, 2009. 10(1): p. 4.
14. Cohen, A., C. Messaoudi, and H. Badir, A new wavelet-based approach for mass spectrometry data classification, in New frontiers of biostatistics and bioinformatics. 2018, Springer. p. 175-189.
15. Nguyen, T., et al., Mass spectrometry cancer data classification using wavelets and genetic algorithm. FEBS letters, 2015. 589(24): p. 3879-3886.
16. Wang, H.-Y., et al., Rapid detection of heterogeneous vancomycin-intermediate Staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: using a machine learning approach and unbiased validation. Frontiers in Microbiology, 2018. 9(2393).
17. Tang, W., et al., MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. Plos one, 2019. 14(6): p. e0218951.
18. Huang, T.-S., et al., Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach. Plos one, 2020. 15(2): p. e0228459.
19. Chambers, M.C., et al., A cross-platform toolkit for mass spectrometry and proteomics. Nature biotechnology, 2012. 30(10): p. 918-920.
20. Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 2020. 17(3): p. 261-272.
21. Wang, H.-Y., et al., Rapidly predicting vancomycin resistance of Enterococcus faecium through MALDI-TOF MS spectrum obtained in real-world clinical microbiology laboratory. bioRxiv, 2020.
22. Botev, Z.I., J.F. Grotowski, and D.P. Kroese, Kernel density estimation via diffusion. The annals of Statistics, 2010. 38(5): p. 2916-2957.
23. Tuv, E., A. Borisov, and K. Torkkola. Feature selection using ensemble based ranking against artificial contrasts. in The 2006 IEEE international joint conference on neural network proceedings. 2006. p. 2181-2186.
24. Geurts, P., D. Ernst, and L. Wehenkel, Extremely randomized trees. Machine learning, 2006. 63(1): p. 3-42.
25. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of machine learning research, 2011. 12(Oct): p. 2825-2830.
26. Schisterman, E.F., et al., Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology, 2005: p. 73-81. |