參考文獻 |
1. Antoniou, A., Storkey, A., & Edwards, H. (2017). Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340.
2. Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: fast and flexible image augmentations. Information, 11(2), 125.
3. Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531.
4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural information processing systems (pp. 2172-2180).
5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
6. He, Z., Zuo, W., Kan, M., Shan, S., & Chen, X. (2019). Attgan: Facial attribute editing by only changing what you want. IEEE Transactions on Image Processing, 28(11), 5464-5478.
7. Iglovikov, V. Albumentations. Retrieved from GitHub: https://github.com/albumentations-team/albumentations (2020)
8. Jain, A. FaceGAN-Generating-Random-Faces. Retrieved from GitHub: https://github.com/adityajn105/FaceGAN-Generating-Random-Faces (2020)
9. Karras, T., Laine, S., Aila.S. StyleGAN - Official TensorFlow Implementation. Retrieved from GitHub: https://github.com/NVlabs/stylegan (2020).
10. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
11. Lv, J. J., Shao, X. H., Huang, J. S., Zhou, X. D., & Zhou, X. (2017). Data augmentation for face recognition. Neurocomputing, 230, 184-196.
12. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
13. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
14. Sajid, M., Ali, N., Dar, S. H., Iqbal Ratyal, N., Butt, A. R., Zafar, B., ... & Baig, S. (2018). Data augmentation-assisted makeup-invariant face recognition. Mathematical Problems in Engineering, 2018.
15. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60.
16. Surma, G. Celebrities Images. Retrieved from Kaggle: https://www.kaggle.com/greg115/celebrities-100k (2020).
17. Wang, X., Wang, K., & Lian, S. (2019). A survey on face data augmentation. arXiv preprint arXiv:1904.11685.
18. Zhang,R. BicyleGAN. Retrieved from GitHub:
https://github.com/junyanz/BicycleGAN (2020)
19. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).
20. Zhu, J. Y. CycleGAN. Retrieved from GitHub: https://junyanz.github.io/CycleGAN/ (2020)
21. Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T. Y., Shlens, J., & Le, Q. V. (2019). Learning data augmentation strategies for object detection. arXiv preprint arXiv:1906.11172. |