參考文獻 |
[1] S.-H. Fang., C-T. Wang., J-Y. Chen., Y. Tsao., F-C. Lin., “Combining acoustic signals and medical records to improve pathological voice classification,” in APSIPA Transaction on Signal and Information Processing, 2019.
[2] S. R. Schwartz., S. M. Cohen., S. H. Dailey., R. M. Rosenfeld., E. S. Deutsch., M. B. Gillespie., E. Granieri., E. R. Hapner., C. E., Kimball., H. J. Krouse et al., “Clinical practice guideline: hoarness (dysphonia),” in Otolaryngology-Head and Neck Surgery, vol. 141, pp.1-31, 2009.
[3] Vaziri. G., Almasganj. F., Behroozmand. R., “Pathological assessment of patients speech signals using nonlinear dynamical analysis,” in Computers in Biology and Medicine, vol.40(1), pp.128-134, 2006.
[4] S. R. Savithri., “Clinical voice evaluation,” http://docplayer,.net/53758736-Clinical-voice-evaluation.html, (Date last accessed March 20, 2020)
[5] H. Kasuya., S. Ogawa., Y. Kikuchi,. And S. Ebihara., “An acoustic analysis of pathological voice and its application to the evaluation of laryngeal pathology,” in Speech Communication, vol.5, no.2, pp.171-181, 1986.
[6] C. Maguire., P. d. Chazal., R. B. Reilly., and P. D. Lacy., “Identification of voice pathology using automated speech analysis,” in Third International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, 2003.
[7] R. Herbrich, “Learning Kernel Classifiers: Theory and Algorithm,” in MIT Press, 2002
[8] R. Schapire., Y. Singer., “Improved boosting algorithms using confidencerated predictions,” in COLT, 1998
[9] E. Allwein., R. Schapire., Y. Singer., “Reducing multiclass to binary: a unifying approach for margin classifiers,” in Journal of Machine Learning Research, pp. 113-141, 2000.
[10] H. Schwenk., “Using boosting to improve HMM/neural network speech recognizer,” in Acoustic, Speech and Signal Processing (ICASSP), pp. 1009-12. 1999.
[11] G. Zweig., “Boosting Gaussian mixture in an LVCSR system,” in Acoustic, Speech and Signal Processing (ICASSP), pp. 1527-30, 2000
[12] T. Dietterich., G. Bakhiri., “Solving multiclass learning, boosting and error-correcting codes,” in COLT, pp.145-155, 1999
[13] D. Yu and L. Deng, Automatic Speech Recognition in Springer Handbook of Signals and Communication Technology, Springer (Chapter 1), 2015
[14] J. Li and L. Deng, Robust Automatic Speech Recognition in Springer Handbook of a
Bridge of Practical Applicants, Springer (Chapter 2), 2016
[15] Roy, N., Merrill, R. M., Thibeault, S., Parsa, R. A., Gray, S. D., & Smith, E. M (2004). Prevalence of voice disorders in teachers and the general population. J Speech Lang Hear Res., 47(2), 281-93
[16] M. Bansal., "Diseases of ear, nose, & throat", in Jaypee Brothers Medical Publisher, 2013.
[17] Vapnik. V, Cortes. C, "Support Vector Network", in Machine Learning, 20, 273-297
[18] M. Mohammed, M.B. Khan and E.B.M. Bashier, Machine Learning: Algorithms and
Applications, CRC Press, Boca Raton, (2017), 115–126
[19] Corinna Cortes and Vladimir Vapnik, Support-Vector Networks, Machine Learning, (1995), 273–297.
[20] Chih-W Hsu and Chih-J Lin, A Comparison of Methods for Multi-class Support Vector Machines, IEEE Transactions on Neural Networks 13, (2002), 415–425.
[21] Dymitr Ruta and Bogdan Gabrys. Classifier selection for majority voting. Information fusion, 6(1):63–81, 2005.
[22] D. Yu and L. Deng, Automatic Speech Recognition in Springer Handbook of Signals and Communication Technology, Springer (Chapter 4), 2015.
[23] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavior science. PhD thesis, Harvard University, Cambridge, MA, 1974.
[24] João Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire De Sousa. Ensemble approaches for regression. Volume 45(1). ACM, 2012, pages 1–40. ISBN: 3512250815. DOI: 10.1145/2379776.2379786.
[25] Alexander Strehl and Joydeep Ghosh. Cluster Ensembles — a Knowledge Reuse Framework for Combining Multiple Partitions. J. mach. learn. res., 3:583–617, March 2003. ISSN: 1532-4435. DOI: 10.1162/153244303321897735.
[26] Thomas G Dietterich. Ensemble Methods in Machine Learning. First international workshop on multiple classifier systems, 1857:1–15, 1990.
[27] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern analysis and machine intelligence, 12(10):993–1001, 1990.
[28] Robi Polikar. Ensemble learning. In, Ensemble machine learning, pages 1–34. Springer US, Boston, MA, 2012.
[29] Li. H., Kinnuen T., “An overview of text-independent speaker recognition: from features to super vectors,” in Speech Communication, pp.12-40.
[30] DAVIS, S., MERMELSTEIN, P. “Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences”, IEEE Transactions on Acoustics, Speech, and Signal Processing, v. 28, n. 4, pp. 357–366, August 1980.
[31] J.I. Godino-Liorente., P. Gomez Vilda., and M. Blanco-Velasco., “Dimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and shortterm cepstral parameter,” in IEEE Transactions on Biomedical Engineering, vol.53, no.10, pp.1943-1953.
[32] S.-H. Fang, Y. Tsao, M.-J. Hsiao, J.-Y. Chen, Y.-H. Lai, F.-C. Lin, and C.-T. Wang, “Detection of pathological voice using cepstrum vectors: A deep learning approach,” in Journal of Voice, pp.634-641, 2019.
[33] JUANG, B.-H., RABINER, L. R., WILPON, J. G. “On the use of band pass littering in speech recognition”, IEEE Transactions on Acoustics, Speech, and Signal Processing, v. 35, n. 7, pp. 947–954, July 1987.
[34] D. Zhang., D. Gatcia-Perez., S. Bengio and I. McCowan., “Semi-supervised adapted HMMs for unusual event detection,” in IEEE Comp Society Conference, vol.1, pp.611-618, 2005.
[35] Fukunaga, Keinosuke, and Patrenahalli M. Narendra. “A branch and bound algorithm for computing k-nearest neighbors.” IEEE Transactions on Computers 100.7 (1975): 750-753.
[36] Friedl, Mark A., and Carla E. Brodley. “Decision tree classification of land cover from remotely sensed data.” Remote Sensing of Environment 61.3 (1997): 399-409.
[37] Varma, Manik, and Bodla Rakesh Babu. “More generality in efficient multiple kernel learning.” Proceedings of the 26th Annual International Conference on Machine Learning. ACM, (2009).
[38] Fawcett, Tom. “An introduction to ROC analysis.” Pattern Recognition letters 27.8 (2006): 861-874. |