博碩士論文 106521103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.224.31.90
姓名 蔡智斌(Jhih-Bin Cai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 Ka頻段輻射計接收機暨Ku頻段氮化鎵功率放大器之研製
(Design of Ka-band Radiometer Receiver and Ku-band GaN Power Amplifier)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-20以後開放)
摘要(中) 本論文主要研究為微波及毫米波前端收發機電路中輻射計接收機及功率放大器。其中,輻射計接收機包含兩個子電路,分別為低雜訊放大器及功率偵測器。
第二章提出了一個使用台積電90 nm CMOS製程操作於Ka頻段低雜訊放大器,作為輻射計接收機之前級放大器,以提高整體系統靈敏度。為達到低雜訊且高增益特性,使用源極退化電感並且以三級疊接架構實現。電路最大增益達到14.2 dB,3 dB頻寬為32至41 GHz,在33.5 GHz有最小值雜訊指數為5 dB。晶片面積為0.9 × 0.77 mm2。
第三章提出了一個使用台積電90 nm CMOS製程操作於Ka頻段功率偵測器,作為輻射計接收機中一個子電路。為改善功率偵測器之響應度及雜訊等效功率,本次設計採用差動對架構實現。差動對架構所需差動訊號,因此於前級加入一個主動式平衡轉不平衡器。量測結果在33 GHz有最大響應度(RV)為45 kV/W與最小雜訊等效功率(NEP)為144 fW/√("Hz" ),晶片面積為0.8 × 0.75 mm2。
第四章提出了一個使用台積電90 nm CMOS製程操作於Ka頻段輻射計接收機,本章節整合了低雜訊放大器及功率偵測器。改良低雜訊放大器後,與功率偵測器整合。量測結果在34 GHz有最大響應度(RV)為4.5 MV/W與最小雜訊等效功率(NEP)為3.6 fW/√("Hz" ),晶片面積為1.54 × 0.76 mm2。
第五章提出了一個使用穩懋0.25 μm GaN製程操作於Ku頻段Doherty功率放大器,功率放大器在發射機系統中為一個關鍵電路,為改善功率放大器之回退6 dB功率增進效益(PAE),本次設計採用Doherty架構。量測結果在14 GHz有最大功率增益為5 dB,輸出飽和功率(PSAT)為30 dBm,功率增進效益(PAE)為16%,晶片面積為1.5 × 2 mm2。
最後,於第六章提出本論文總結與未來研究方向。
摘要(英) In this thesis, a radiometer receiver and a power amplifier in microwave and millimeter-wave front-end transceiver are presented. The radiometer receiver includes two block, low noise amplifier (LNA) and power detector.
In chapter 2, a Ka-band low noise amplifier using TSMC 90 nm process is presented as a pre-amplifier for radiometer receiver to improve the system sensitivity. To achieve low noise and high gain, inductive source degeneration and three-stage cascode architecture are used. The measured small signal gain is 14.2 dB with 3-dB bandwidth from 32 to 41 GHz, and minimum noise figure of 5 dB at 33.5 GHz. The chip size of the LNA is 0.9 × 0.77 mm2.
In chapter 3, a Ka-band power detector using TSMC 90 nm process is presented as a block for radiometer receiver. To improve the power detector responsivity (RV) and noise equivalent power (NEP), differential pair architecture is used. The active balun is used to provide the differential signal to the input of the power detector. The power detector has a measured peak responsivity of 45 kV/W and a noise equivalent power of 144 fW/√("Hz" ). The chip size of the power detector is 0.8 × 0.75 mm2.
In chapter 4, a Ka-band radiometer receiver using TSMC 90 nm process is presented. The improved LNA and the power detector are integrated in this chapter. The radiometer receiver has a measured peak responsivity of 4.5 MV/W and a noise equivalent power of 3.6 fW/√("Hz" ). The chip size of the power detector is 1.54 × 0.76 mm2.
In chapter 5, a Ku-band Doherty power amplifier using WIN 0.25 μm GaN process is presented. The power amplifier is a crucial block in the transmitter system. To improve the 6-dB power back-off efficiency, the Doherty architecture is used. The measured small signal gain is 5 dB at 14 GHz. The proposed PA achieves 30 dBm saturated output power with 16% power added efficiency (PAE) at 14 GHz. The chip size of the power amplifier is 1.5 × 2 mm2.
In chapter 6, the conclusion and future works are presented.
關鍵字(中) ★ 低雜訊放大器
★ 功率偵測器
★ 輻射計接收機
★ 功率放大器
★ 氮化鎵
關鍵字(英) ★ Low noise amplifier
★ Power detector
★ Radiometer receiver
★ Power amplifier
★ GaN
★ CMOS
論文目次 摘要 IX
Abstract X
致謝 XII
目錄 XIV
圖目錄 XVII
表目錄 XXIII
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 1
1.3 論文貢獻 3
1.4 論文架構 3
第二章 Ka頻段三級低雜訊放大器 4
2.1 簡介 4
2.1.1 重要參數介紹 4
2.2 製程簡介 6
2.2.1 台積電 90 nm CMOS 製程 6
2.3 電路設計與分析 7
2.4 電路模擬與量測 16
2.5 電路除錯分析 21
2.6 總結 26
第三章 Ka頻段功率偵測器 28
3.1 簡介 28
3.1.1 功率偵測器介紹 28
3.1.2 重要參數介紹 29
3.2 製程簡介 30
3.2.1 台積電 90 nm CMOS 製程 30
3.3 電路設計與分析 30
3.4 電路模擬與量測 38
3.5 電路除錯分析 46
3.6 總結 49
第四章 Ka頻段輻射計接收機 51
4.1 簡介 51
4.2 製程簡介 51
4.2.1. 台積電 90 nm CMOS 製程 51
4.3 電路設計與分析 52
4.4 電路模擬與量測 57
4.5 電路除錯分析 66
4.6 總結 68
第五章 Ku頻段Doherty功率放大器 70
5.1 簡介 70
5.2 製程簡介 70
5.2.1. 穩懋0.25 μm GaN 製程 70
5.3 電路設計與分析 71
5.4 電路模擬與量測 80
5.5 總結 88
第六章 結論 90
參考文獻 91
參考文獻 [1] L. Zhou, C.-C.Wang, Z. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems”, IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 378391, Feb. 2011.
[2] L. Aluigi, D. Pepe, F. Alimenti and D. Zito, "K-Band SiGe System-on-Chip Radiometric Receiver for Remote Sensing of the Atmosphere", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 64, no. 12, pp. 3025-3035, 2017.
[3] L. Gilreath, V. Jain, and P. Heydari, "Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver," IEEE J. Solid-State Circuits, Vol. 46, No. 10, pp. 2240-2252, Oct. 2011.
[4] A. Tomkins, P. Garcia, and S. P. Voinigescu, "A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS," IEEE J. Solid-State Circuits, Vol. 45, No. 10, pp. 1981-1991, Oct. 2010.
[5] M. Sato, T. Hirose and K. Mizuno, "Advanced MMIC receiver for 94-GHz band passive millimeter-wave imager", IEICE Trans. Electron., vol. E92-C, no. 9, pp. 1124-1129, Sep. 2009.
[6] Guangyin Feng, Xiang Yi, Fanyi Meng, Chirn Chye Boon, "A W-Band Switch-Less Dicke Receiver for Millimeter-Wave Imaging in 65 nm CMOS", IEEE Access, vol. 6, pp. 39233-39240, 2018.
[7] J. W. May and G. M. Rebeiz, "Design and Characterization of W-Band SiGe RFICs for Passive Millimeter-Wave Imaging", IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, May 2010.
[8] Q. Gu et al., "A D-Band Passive Imager in 65 nm CMOS", IEEE Microwave and Wireless Components Letters, vol. 22, no. 5, pp. 263-265, May 2012.
[9] Roee Ben Yishay, Danny Elad, "D-band Dicke-radiometer in 90 nm SiGe BiCMOS technology", in 2017 IEEE MTT-S International Microwave Symposium Digest, Honolulu Hawai’i, USA, June 2017, pp. 1957-1960.
[10] H. Lee, Y. Kim, V. Volkov, R. Kozhin, D. Vavriv and T. Kim, "35 GHz compact radar using fan beam antenna array for obstacle detection", Electron. Lett., vol. 43, no. 25, pp. 1461-1462, Dec. 2007.
[11] Yiming Yu, Huihua Liu, Yunqiu Wu, Kai Kang, "A 54.4–90 GHz Low-Noise Amplifier in 65-nm CMOS", IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 2892-2904, 2017.
[12] Hsin-Chih Kuo and Huey-Ru Chuang, “A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS”, in 2013 European Microwave Conference Digest, Nuremberg, Germany, Oct. 2013.
[13] Xiaojun Bi, Yongxin Guo, Minkyu Je, "Analysis and Design of Gain Enhanced Cascode Stage Utilizing a New Passive Compensation Network", IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 2892-2900, 2013.
[14] Han-Chih Yeh, Chau-Ching Chiong, Sofiane Aloui, Huei Wang, "Analysis and design of milimeter-wave low voltage CMOS cascode LNA with magnetic coupled technique", IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4066-4079, 2012.
[15] Pei Qin, Quan Xue, "Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer", IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 657-659, 2017.
[16] Gholamreza Nikandish, Ali Medi, "Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers", IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 441-448, 2015.
[17] Gholamreza Nikandish, Alireza Yousefi, Milad Kalantari, "A Broadband Multistage LNA With Bandwidth and Linearity Enhancement", IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 834-836, 2016.
[18] G. Liu and H. Schumacher, “Broadband millimeter-wave LNAs(47–77 GHz and 70–140 GHz) using a T-type matching topology,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2022–2029, Sep. 2013.
[19] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A review of GaN on SiC high electron-mobility power transistors and MMICs", IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764-1783, Jun. 2012.
[20] R. Quaglia, V. Camarchia, J. J. M. Rubio, M. Pirola, and G. Ghione, “A 4-W Doherty power amplifier in GaN MMIC technology for 15-GHz applications,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 4, pp. 365–367, Apr. 2017.
[21] M. Coffey et al., “A 4.2-W 10-GHz GaN MMIC Doherty power amplifier,” in Proc. IEEE Compound Semiconductor Integr. Circuit Symp., Oct. 2015, pp. 1–4.
[22] C. F. Campbell, K. Tran, K. Ming-Yih, S. Nayak, "A K-Band 5W Doherty Amplifier MMIC Utilizing 0.15µm GaN on SiC HEMT Technology", Compound Semiconductor Integrated Circuit Symposium (CSICS) 2012 IEEE, pp. 1-4, 2012.
[23] R. Quaglia, V. Camarchia, T. Jiang, M. Pirola, S. Donati Guerrieri, B. Loran, "K-Band GaAs MMIC Doherty Power Amplifier for Microwave Radio With Optimized Driver", IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2518-2525, Nov. 2014.
[24] J. Kim et al., "6-18GHz 26W GaN HEMT compact power-combined non-uniform distributed amplifier", Electronics Letter, vol. 52, no. 25, pp. 2040-2042, Dec. 2016.
[25] J. J. Komiak, C. Kanin, and P. C. Chao, "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and No FP technology, " in 2011 IEEE MTT-S International Microwave Symposium Digest, Baltimore, Maryland, June 2011, pp. 1-4.
[26] Gijs van der Bent, Peter de Hek, Frank E. van Vliet, "Design Procedure for Integrated Microwave GaAs Stacked-FET High-Power Amplifiers", IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 9, pp. 3716-3731, 2019.
[27] H.-T. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers", IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, Apr. 2013.
[28] D. Fritsche, R. Wolf and F. Ellinger, "Analysis and design of a stacked power amplifier with very high bandwidth", IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3223-3231, Oct. 2012.
[29] Y. Park, Y. Kim, W. Choi, J. Woo and Y. Kwon, "X-to-K band broadband watt-level power amplifier using stacked-FET unit cells", IEEE RFIC Symp. Dig., pp. 1-4, Jun. 2011.
[30] S.-H. Chang, C.-N. Chen and H. Wang, "A Ka-band dual-mode power amplifier in 65-nm CMOS technology", IEEE Microwave and Wireless Components Letters, vol. 28, no. 8, pp. 708-710, Aug. 2018.
[31] Yang Chang, Bo-Ze Lu, Yunshan Wang, Huei Wang, "A Ka-Band Stacked Power Amplifier with 24.8-dBm Output Power and 24.3% PAE in 65-nm CMOS Technology", in 2019 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, June 2019, pp. 316-319.
[32] Y.-C. Chen, Y.-H. Lin, J.-L. Lin and H. Wang, "A Ka-band transformer-based Doherty power amplifier for multi-Gb/s application in 90-nm CMOS", IEEE Microwave and Wireless Components Letters, Nov. 2018.
[33] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2 nd ed. Upper Saddle River, NJ: Prentice Hall, 1996, ch. 4.
[34] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2011
[35] D. Siao, J. Kao, Y. Hsiao, Y. Hsu, Y. Teng, G. Huang, et al., "A 190-GHz amplifier with gain-boosted technique in 65-nm CMOS", in 2014 IEEE MTT-S International Microwave Symposium Digest, Florida, USA, June 2014, pp. 1-3.
[36] 劉育誠,「應用於追蹤保持電路之高速寬頻放大器與毫米波主動集成天線之研究」,國立中央大學,博士論文,民國105年。
[37] Hsin-Chih Kuo and Huey-Ru Chuang, “A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS”, in 2013 European Microwave Conference Digest, Nuremberg, Germany, Oct. 2013.
[38] E. Cohen, S. Ravid, and D. Ritter, "An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90nm CMOS process for 60 GHz phase array radio," IEEE RFIC Symp. Dig., June 2008, pp. 61-64.
[39] Hsieh-Hung Hsieh and Liang-Hung Lu, “A 40-GHz Low-Noise Amplifier with a Positive-Feedback Network in 0.18-um CMOS” IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, pp.1895 - 1902, Aug.2009.
[40] S. H. Yen, Y. S. Lin, "Ka-band low noise amplifier using standard 0.18 um cmos technology", IEEE Electronics Letters, vol. 42, no. 16, aug. 2006.
[41] Ping-Han Ho, Chau-Ching Chiong, Huei Wang, "An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process", in 2013 Asia Pacific Microwave Conference Proceedings, Seoul, Korea, Nov. 2013, pp. 713-715.
[42] S.M. Mohd Hassan, A. Marzuki, N.E. Farid, R. Sanusi, "A 2-stage cascode CMOS low-noise amplifier for 40 GHz RoF system", 2017 Asia Pacific Microwave Conference Proceedings, Kuala Lumpur, Malasia, Nov. 2017, pp. 562-565.
[43] Pei Qin, Quan Xue, "Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer", IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 657-659, 2017.
[44] Mohamed Elkholy, Sherif Shakib, Jeremy Dunworth, Vladimir Aparin, Kamran Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS", IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, 2018.
[45] Kelvin Fang, James F. Buckwalter, "Efficient Linear Millimeter-Wave Distributed Transceivers in CMOS SOI", IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 295-307, 2019.
[46] Yu-Teng Chang, Tai-Yi Lin, Hsin-Chia Lu, "A Low Power Wideband V-Band LNA Using Double-Transformer-Coupling Technique and T-Type Matching in 90nm CMOS", in 14th European Microwave Integrated Circuits Conference Digest,Paris, France, Oct. 2019, pp. 224-227.
[47] Jubaid Abdul Qayyum, John Albrecht, John Papapolymerou, Ahmet Cagri Ulusoy, "A 28-60 GHz SiGe HBT LNA with 2.4-3.4 dB Noise Figure", in 14th European Microwave Integrated Circuits Conference Digest,Paris, France, Oct. 2019, pp. 250-253.
[48] Z. Liu, S. Member, P. Gao, Z. Chen, "A K-band Low Noise Amplifier with On-chip Baluns in 90nm CMOS", 2015 IEEE Int. Symp. Radio-Frequency Integr. Technol., pp. 241-243, 2015.
[49] L. Aluigi and D. Zito, "Analysis and design of mm-wave detectors in SiGe SoC radiometers for spaceborne observations of solar flares", IEEE Microrad, pp. 48-53, 2016.
[50] L. Aluigi, D. Pepe and D. Zito, "K-band SiGe dual-input LNA and detector for SoC radiometers for remote sensing of atmosphere", Proc. IEEE ICECS Monte Carlo Monaco, pp. 332-335, Dec. 2016.
[51] E. S. Malotaux and M. Spirito, "Characterization of broadband low-NEP square-law detectors for mm-wave passive imaging", in 2016 IEEE MTT-S International Microwave Symposium Digest, San Francisco, USA, May 2016, pp. 1-4.
[52] Christopher T. Coen, Adrian Ildefonso, Zachary E. Fleetwood, John D. Cressler, " A 19–34 GHz SiGe HBT square-law detector with ultra-low 1/f noise for atmospheric radiometers", in 12th European Microwave Integrated Circuits Conference Digest, Nuremberg, Germany, Oct. 2017,, pp. 163-166.
[53] Y. Park et al., "GaN HEMT MMIC Doherty power amplifier with high gain and high PAE", IEEE Microwave and Wireless Components Letters, vol. 25, no. 3, pp. 187-189, Mar. 2015.
[54] Hsuan-Yin Huang, Jyun-Jia Huang, Jhin-Bin Cai, and Hong-Yeh Chang“A 12-to-17 GHz Power Amplifier Using T-Model Matching Network in 0.25-μm GaN pHEMT Technology”, 2017 Asia Pacific Microwave Conference Proceedings, Singapore, Singapore, Dec. 2019, pp. 980-982.
[55] 穩懋NP25-00 0.25μm GaN pHEMT Power Device Layout Design Manual
[56] D. M. Pozar, Microwave Engineering, 3rd Ed.. New York, NY, USA, Wiley, 2005.
[57] L. Samoska, Kun-You Lin, Huei Wang, Yun-Ho Chung, M. Aust, S. Weinreb, D. Dawson, "On the stability of millimeter-wave power amplifiers", in 2002 IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, USA, June 2002, pp. 429-432.
[58] Esref Turkmen, Barbaros Cetindogan, Melik Yazici, Yasar Gurbuz,“Design and Characterization of a D-Band SiGe HBT Front-End for Dicke Radiometers” IEEE Sensors Journal, vol. 20, no. 1, pp. 4694-4703, 2020.
[59] Allison Duh, Maxwell Duffy, William Hallberg, Mauricio Pinto, Taylor Barton, Zoya Popovi´c“A 10.8-GHz GaN MMIC Load-Modulated Amplifier” , in 2019 European Microwave Conference Digest, Paris, France, Nov. 2019.
[60] Guansheng Lv, Wenhua Chen, Xin Liu, Fadhel M. Ghannouchi, Zhenghe Feng, “A Fully Integrated C-Band GaN MMIC Doherty Power Amplifier With High Efficiency and Compact Size for 5G Application” IEEE Access, vol. 7, pp. 71665-71674, 2019.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2020-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明