參考文獻 |
[1] David Landgrebe, ”Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data,” Chap. 1 in Information Processing for Remote Sensing, World Scientific Publishing Co., Inc., River Edge, NJ, Spring, 1999.
[2] California Institute of Technology, ”AVIRIS Concept," ttp://popo.jpl.nasa.gov/html/aviris.concept.html, JPL, External Website, Clearance Number: CL 01-0748, NASA, Spring, 2002.
[3] P. Swain and E.S. Davis, Remote Sensing: The Quantitative Approach., McGraw-Hill, New York, 1983.
[4] A.S. Mazer and M. Martin, et al., ”Image processing software for imaging spectrometry data analysis,” Remote Sensing of Environment. 24(1), pp. 201–210, 1988.
[5] R.H. Yuhas, A.F.H. Goetz, and J.W.Boardman, ”Discrimination amoung semiarid landscape endmembers using the spectral angle mapper (SAM) algorithm," 3rd Annual JPL Airborne Geoscience Workshop, Jet Propulsion Laboratory, Pasadena, CA. 92-14(1), pp. 147–149, 1992.
[6] C.H. Chen, Fuzzy Logic and Neural Network Handbook, McGraw-Hill, New York, 1996.
[7] K. S. Chen, W. P. Huang, D. H. Tsay, and F. Amar, ” Classification of multifrequency polarimetric SAR image using a dynamic learning neural network,” IEEE Trans. on Geoscience and Remote Sensing, Vol. 34, no. 3, pp.814–820, 1996.
[8] Tzeng, Y. C. and K. S. Chen, ”A fuzzy neural network for SAR image Classification ” IEEE Trans. on Geoscience and Remote Sensing, Vol. 36, pp. 301–307,1997.
[9] Y. A. Liou, Y. C. Tzeng, and K. S. Chen, ”A neural network approach to radiometric sensing of land surface parameters,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no.6, pp. 2718–2724, 1999.
[10] K. S. Chen, Y. C. Tzeng and P. T. Chen, ”A neural network approach to wind retrieval form ERS-1 scatterometer data,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no.1, pp. 247–256, 1999.
[11] K. S. Chen, S. K. Yen and D. H. Tsay, ”Neural Classification of SPOT image through integration of intensity and fractal information,” Intl J. Remote Sensing, Vol. 18, no.4, pp.763–783, 1996.
[12] K. S . Chen, W. L. Kao, and Y. C. Tzeng, ”Retrieval of surface parameters using dynamic learning neural network,” Intl Journal of Remote Sensing, vol. 16, pp.801–809, 1995.
[13] J. Harsanyi and C.-I Chang, ”Hyperspectral image Classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. On Geoscience and Remote Sensing, Vol. 32, no. 4, pp. 779–785 (1994).
[14] C.-I Chang, T.-L.E. Sun and M.L.G. Althouse, ”An unsupervised interference rejection approach to target detection and Classification for hyperspectral imagery," Optical Engineering, vol. 37, pp. 735–743, 1998.
[15] C.-I Chang, Q. Du, T. L. Sun, and Mark L. G. Althouse, ”A joint band prioritization and band decorrelation approach to band selection for hyperspectral image Classification,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no. 6, pp. 2631–2641, 1999.
[16] C.-I Chang, X. Zhao, M.L.G. Althouse and J.-J. Pan, ”Least squares subspace projection approach to mixed pixel Classification in hyperspectral images,” IEEE Trans. on Geoscience and Remote Sensing, vol. 36, pp. 898–912, 1998.
[17] T.M. Tu, H.C. Shy, C.-H. Lee and C.-I Chang, ”An oblique subspace projection to mixed pixel Classification in hyperspectral images,” Pattern Recognition, vol. 32, no. 8, pp. 1399–1408, 1999.
[18] C.-I Chang, ”Least squares error theory for linear mixing problems with mixed pixel Classification for hyperspectral imagery,” Recent Research Developments in Optical Engineering, vol. 2, pp. 241–268, 1999.
[19] T.-M. Tu, C.-H. Chen and C.-I Chang, ”A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection," IEEE Trans. on Geoscience and Remote Sensing, Vol. 35, pp. 127–139, 1997.
[20] C.-I Chang, T.-L.E. Sun and M.L.G. Althouse," An unsupervised interference rejection approach to target detection and Classification for hyperspectral imagery," Optical Engineering, vol. 37, pp. 735–743, 1998.
[21] C. Brumbley and C.-I Chang, ”An unsupervised vector quantization-based target signature subspace projection approach to Classification and detection in unknown background,” Pattern Recognition, vol. 32, no. 7, pp. 1161–1174, 1999.
[22] C.-I Chang and H. Ren, ”An experiment-based quantitative and comparative analysis of hyperspectral target detection and image Classification algorithms,”IEEE Trans. on Geoscience and Remote Sensing, vol. 38, no. 2, pp. 1044–1063, 2000.
[23] T.M. Tu, C.-H. Chen and C.-I Chang, ”A noise subspace projection approach to target signature detection and extraction in unknown background for hyperspectral images," IEEE Trans. on Geoscience and Remote Sensing, vol. 36, pp. 171–181, 1998.
[24] H. Ren and C.-I Chang, ”A generalized orthogonal subspace projection approach to unsupervised multispectral image Classification,” IEEE Trans. on Geoscience and Remote Sensing, vol. 38, no. 6, pp. 2515–2528, 2000.
[25] C.-I Chang, ”Further results on relationship between spectral unmixing and subspace projection,” IEEE Trans. on Geoscience and Remote Sensing, vol. 36, pp. 1030–1032, 1998.
[26] T.M. Tu, C.-H. Chen, J-L. Wu and C.-I Chang, ”A fast two-stage Classification method for high dimensional remote sensing data,” IEEE Trans. on Geoscience and Remote Sensing, vol. 36, pp. 182–191, 1998.
[27] C.-I Chang and D. Heinz, ”Subpixel spectral detection for remotely sensed images,” IIEEE Trans. on Geoscience and Remote Sensing, vol. 38, vol. 3, pp. 1144–1159, 2000.
[28] D. Heinz and C.-I Chang, ”Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery,” IEEE Trans. on Geoscience and Remote Sensing, vol. 39, vol. 3, pp. 529–545, 2000.
[29] C.-I Chang and Q. Du, ”Interference and noise adjusted principal components analysis,” IEEE Trans. on Geoscience and Remote Sensing,, vol. 37, no. 5, pp. 2387–2396, 1999.
[30] C.-I Chang and S.-S. Chiang, ”Discrimination measures for target Classification,” Geoscience and Remote Sensing Symposium, 2001. IGARSS’01. IEEE International, 4, pp. 1871–1873, 2001.
[31] C.-I Chang, J.-M. Liu, B.-C. Chieu, C.-M. Wang, C. S. Lo, P.-C. Chung, H. Ren, C.-W. Yang, D.-J. Ma, ”A generalized constrained energy minimization approach to subpixel target detection for multispectral imagery,” Optical Engineering, vol. 39, no. 5, pp. 1275–1281, 2000.
[32] H. Ren and C.-I Chang, ”Target-constrained interference-minimized approach to subpixel target detection for hyperspectral imagery,” Optical Engineering, vol. 39, no. 12, pp. 3138–3145, 2000.
[33] C.-I Chang, H. Ren and S.S. Chiang, ”Real-time processing algorithms for target detection and Classification in hyperspectral imagery,” IEEE Trans. on Geoscience and Remote Sensing, vol. 39, no. 4, pp. 760–768, 2000.
[34] Q. Du and C.-I Chang, ”A linear constrained distance-based discriminant analysis for hyperspectral image Classification,” Pattern Recognition, vol. 34, pp. 361–373, 2001.
[35] C.-I Chang and C. Brumbley, ”A Kalman filtering approach to multispectral image Classification and detection of changes in signature abundance,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no. 1, pp. 257–268, 1999.
[36] C.-I Chang and C. Brumbley, ”Linear unmixing Kalman filtering approach to signature abundance detection, signature estimation and subpixel Classification for remotely sensed images,” IEEE Trans. on Aerospace and Electronics Systems, vol. 37, no 1, pp. 319–330, 1999.
[37] A. Ifarragaerri and C.-I Chang, ”Hyperspectral image segmentation with convex cones,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no 2, pp. 756-770, 1999.
[38] A. Ifarragaerri and C.-I Chang, ”Multispectral and hyperspectral image analysis with projection pursuit,” IEEE Trans. on Geoscience and Remote Sensing, vol. 38, vol. 6, pp. 2529–2538, 2000.
[39] C.-I Chang, ”An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. on Information Theory, vol. 46, no. 5, pp. 1927–1932, 2000.
[40] K. Guilfoyle, M.L.G. Althouse and C.-I Chang, ”A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks,” IEEE Trans. on Geoscience and Remote Sensing, vol. 39, no. 10, pp. 2314–2318, 2001.
[41] P. Ready , and P. Wintz, ”Information Extraction, SNR Improvement, and Data Compression in Multispectral Imagery,” IEEE Trans. on Communications, vol. 21, pp. 1123–1130, 2001.
[42] Green, A, M Berman, P Switzer, and M Craig, ”A Transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 65–74, 1988.
[43] Lee, J, S Woodyatt, and M Berman, " Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform,” IEEE Trans. on Geoscience and Remote Sensing, vol. 28, no. 3, pp. 295–304, 1990.
[44] R. E. Roger, ”A faster way to compute the noise-adjusted principal components transform matrix,” IEEE Trans. on on Geoscience and Remote Sensing, vol. 32, no. 6, pp. 1194–1196, 1994.
[45] Y. Yabuuchi and J. Watada, ”Fuzzy Principal Component Analysis and Its Application,” Biomedical Fuzzy and Human Sciences, Vol.3, No.1, pp.83–92, 1997.
[46] P. F. Chen, C. T. Tho, ”Hyperspectral imagery Classification using a backpropagation neural network,” IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Vol. 5, 27, pp. 2942–2947, 1994.
[47] J. A. Benediktsson, P. H. Swain, O. K. Ersoy and D. Hong, ”Classification of Very High Dimensional Data Using Neural Networks," Proceedings of the IEEE International Geosci. and Remote Sens. Symposium, Washington, DC, pp. 1269–
1272, 1990.
[48] J. A. Benediktsson, P.H. Swaini, and O.K. Ersoy (1990b), ”Neural Network approaches versus statistical methods in Classification of multisource remote sensing data,” IEEE Trans. Geosci. Remote Sens. Vol. 28, no. 4, pp. 540–551, 1990.
[49] X. Jia and J. A. Richards, ”Segmented principal components transformation for effcient hyperspectral remote-sensing image display and Classification,” IEEE Trans. Geosci. Remote Sens. Vol. 37, no. 1, pp. 538–542, 1999.
[50] J. A. Benediktsson and I. Kanellopoulos, ”Classification of Multisource and Hyperspectral Data Based on Decision Fusion,” IEEE Trans. Geosci. Remote Sens. vol. 37, no. 3, pp. 1367 –1377, 1999.
[51] K. Fukunaga and R. R. Hayes, ”Effects of sample size inclassifier design,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-11, No. 8, pp. 873–885, 1989.
[52] G. F. Hughes, ”On the mean accuracy of statistical patternrecognizers,” IEEE Trans. on Information Theory vol. IT-14, No. 1, pp. 55–63, 1968.
[53] B. M. Shahshahani and D. A. Landgrebe, ”The effect of unlabeled samples in reducing the small sample sizeproblem and mitigating the Hughes phenomenon," IEEETransactions on Geoscience and Remote Sensing, Vol.32, No. 5, pp. 1087–1095, September 1994.
[54] S. Tadjudin and D.A. Landgrebe, ”Robust Parameter Estimation For Mixture Model,” IEEE Trans. Geosci. Remote Sens. Vol. 38, No. 1, pp. 439–445, 2000.
[55] C. C. Han, K. C. Fan, and Z. M. Chen, " Finding of optimal stack filter by graphic searching methods,” IEEE Trans. Signal Processing, Vol. 45, no. 7, pp. 1857–1862, 1997.
[56] A. Pentland and B. Moghaddam, ”View-based and modular eigenspaces for face recognition,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 84–91, 1994.
[57] B. H. Juang, W. Chou, and C. H. Lee, ”Minimum Classification error rate methods for speech recognition,” IEEE Trans. Speech and Audio Processing, Vol. 5, no. 3, pp. 257–265, 1997.
[58] J. A. Richards and X. Jia, ”Interpretation of Hyperspectral Image Data,” Chap. 13 in Remote Sensing Digital Image Analysis, An Introduction, 3rd ed., pp. 313–337, Springer-Verlag, New York, 1999.
[59] Y. L. Chang, C. C. Han, K. C. Fan, K. S. Chen, and J. H. Chang, ”A Modular Eigen Subspace Scheme for High-dimensional Data Classification with NASA MODIS/ASTER (MASTER) airborne simulator datasets of Pacrim II project,”Processing of SPIE, 4816, pp. 426–436, 2002.
[60] Y. L. Chang, C. C. Han, K. C. Fan, K.S. Chen, C. T. Chen and J. H. Chang, ”Greedy Modular Eigenspaces and Positive Boolean Function for Supervised Hyperspectral Image Classification,” accepted and to appear in Optical Engineering, 2003.
[61] Y. L. Chang, C. T. Chen, C. C. Han, K. C. Fan, K. S. Chen and J. H. Chang ”Hyperspectral and SAR Imagery Data Fusion with Positive Boolean Function,”accepted and to appear in SPIE’s AeroSense, Aerospace/Defense Sensing, Simulation, and Controls, Orlando, FL, 2003.
[62] L. O. Jimenez and D. A. Landgrebe, ”Hyperspectral data analysis and supervised feature reduction via projection pursuit,” IEEE Trans. Geosci. Remote Sens. Vol. 37, no. 6, pp. 2653–2667, 1999.
[63] S. Kumar, J. Ghosh and M. M. Crawford, ”Best-bases feature extraction algorithms for Classification of hyperspectral data,” IEEE Trans. Geosci. Remote Sens. Vol. 39, no. 7, pp. 1368–1379, 2001.
[64] C. C. Han, and C. L. Tsai, ”A multi-resolutional face verification system via filter-based integration,” IEEE Int. Carnahan Conf. Security Technology, pp. 278–281, 2001.
[65] C. C. Han, ”A supervised Classification scheme using positive boolean function,”Proceedings. 16th International Conference on Pattern Recognition, IEEE, Quebec, Canada, Vol. 2, pp. 100–103, 2002.
[66] R.O. Duda and P.E. Hart, ”Nonparametric Techniques,” Chap. 4 in Pattern Classification and Scene Analysis, pp. 85-129, John Wiley & Sons, New York, 1973.
[67] C. Lee and D. A. Landgrebe, ”Analyzing high-dimensional multispectral data," IEEE Trans. Geosci. Remote Sens. Vol. 31, no. 4, pp. 792–800, 1993.
[68] L. Wald, ”Some Terms of Reference in Data Fusion,” IEEE Trans. Geosci. Remote Sensing, Vol. 37, no. 3, pp. 1190–1193, 1999.
[69] C. Pohl and J. L. van Genderen, ”ultisensor image fusion in remote sensing: Concepts, methods and applications,” Int. J. Remote Sensing, vol. 19, no. 5, pp. 823–854, 1998.
[70] D. L. Hall, J. Llinas,”An introduction to multisensor data fusion,” Proceedings of the IEEE, Vol. 85, pp. 6–23, Jan. 1997.
[71] J. S. Lee, M. R. Grunes, T. L. Ainsworth, L. J. Du, D. L. Schuler and S. R. Cloude, ”Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier,” IEEE Trans. Geosci. Remote Sensing, Vol. 37, no. 5, pp. 2249–2258, 1999.
[72] B. Moghaddam and A. Pentland, ”Probabilistic visual learning for object detection,” in Proc. 5th International Conference on Computer Vision, Boston, MA. pp. 786–793, 1995.
[73] P. D. Wendt, E. J. Coyle, and N. C. Gallagher, ”Stack filter,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 34, no. 4, pp. 898–911, 1986.
[74] J. P. Fitch, E. J. Coyle, and N. C. Gallagher, ”Median filtering by threshold decomposition,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 32, pp. 1183–1188, 1984.
[75] P. Maragos and R. S. Schafer, ”Morphological filters. Part II: Their relations to median, order-statistic, and stack filters,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 35, pp. 1170–1184, 1987.
[76] E.R. Dougherty, ”Optimal Mean-Square N-Observation Digital Morphological Filters. II. Optimal Gray-Scale Filters,” CVGIP: Image Understanding, 55(1), pp. 55–72, 1992.
[77] J.G. Postaire, R.D. Zhang and C. Lecocq-Botte, ”Cluster analysis by binary morphology,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 15, pp. 170–180, 1993.
[78] J.-H. Lin and E. J. Coyle, ”Minimum mean absolute error estimation over the class of generalized stack filters,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, pp. 663–678, 1990.
[79] E. J. Coyle and J. H. Lin, ”Stack filters and the mean absolute error criterion," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 36, no. 8, pp. 1244–1254, 1988.
[80] M. Gabbouj and E.J. Coyle, ”Minimum mean absolute error stack filtering with structural constraints and goals,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 36, no. 8, pp. 955–968, 1990.
[81] J.-H. Lin, T. M. Sellke, and E. J. Coyle, ”Adaptive stack filtering underthe mean absolute error criterion,” IEEE Trans. Acoust., Speech, SignalProcessing, vol. 38, pp. 938–954, 1990.
[82] J.-H. Lin and Y.-T. Kim, ”Fast algorithms for training stack filters,” IEEE Transactions on Signal Processing, Vol. 42, no. 4, pp. 772–781, 1994.
[83] S. J. Hook, J. J. Myers, K. J. Thome, M. Fitzgerald and A. B. Kahle, ”The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies,” Remote Sensing of Environment. 76(1), pp. 93–102, 2001. |