博碩士論文 106521028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:149 、訪客IP:3.147.42.168
姓名 胡庭玉(Ting-Yu Hu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 超晶格緩衝層對成長於矽基板氮化鎵高電子遷移率電晶體動態特性之影響
(Effects of Superlattice Buffer Layers on the Dynamic Characteristics of GaN-on-Si High Electron Mobility Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究包括製作具有不同AlxGa1-xN/AlyGa1-yN超晶格緩衝層之氮化鎵高電子遷移率電晶體(High Electron Mobility Transistor, HEMT),並探討不同超晶格緩衝層對成長於矽基板之GaN元件動態特性之影響。
第一部份之研究標的為成長於矽基板之AlInN/GaN HEMTs,緩衝層的動態響應很大程度上取決於應力緩衝層中超晶格的成分、厚度和位置,應力釋放可使緩衝層之缺陷密度下降。研究顯示具超晶格緩衝層之元件對垂直崩潰電壓方面有顯著的改善,也減緩電子陷捕效應。在背閘極負偏壓量測垂直遲滯曲線中,缺陷密度低的元件有最低的緩衝層遲滯曲線,表示電子陷捕最少。脈衝量測指出不同靜態偏壓點下(Vgsq, Vdsq) = (-1, 5)、(-1, 10)、(-4, 0),缺陷密度與電流崩塌效應相關,缺陷密度低的元件其電流回復狀況越佳。當缺陷密度從10.55×10^8 cm-2降至5.4×10^8 cm-2,垂直崩潰電壓可從360 V提高至446 V。
第二部份之研究標的為成長於矽基板之AlGaN/GaN HEMTs,分別將不同對數之Al0.8Ga0.2N/Al0.2Ga0.8N超晶格置於緩衝層中,超晶格對數之組合由50對增至80對,緩衝層缺陷密度從8.8×10^8 cm-2降至8.01×10^8 cm-2,垂直崩潰電壓可達544 V。於此部分缺陷密度最低的元件在動態特性方面,由脈衝量測檢視電流崩塌對元件電性之影響,隨著對數的增加,顯示缺陷密度低的元件其電流回復狀況越好。
最後利用電流暫態頻譜計算出電子脫阱的時間常數並萃取活化能。以兩種條件的關閉狀態(off-state)應力偏壓後,50對的超晶格元件其活化能分別為0.37 eV與0.30 eV;60對的元件其活化能分別為0.50 eV與0.32 eV;80對的元件其活化能分別為0.35 eV與0.23 eV。推估缺陷位置可能位於GaN buffer layer。這項對Ⅲ族氮化物HEMT-on-Si的緩衝層動態研究,有望幫助提升GaN HEMTs高功率元件的可靠度。
摘要(英) This study aims to investigate the effects of different AlxGa1-xN/AlyGa1-yN superlattice(SL) buffer layers on the dynamic characteristics of AlInN/GaN and AlGaN/GaN high electron mobility transistors (HEMTs) grown on low-resistivity silicon substrates.
The first part of the study focuses on the dynamic buffer response of AlInN/GaN HEMTs. The dynamic response of the buffer layer largely depends on the composition, thickness and position of the superlattice in the stress-mitigating buffer. It is observed that devices with superlattice buffer exhibit significant improvements in vertical breakdown voltage, and charge trapping effect. Negative back-gating measurements show the lowest buffer current hysteresis in the sample with the lowest dislocation density, indicating least charge trapping in the sample. Additionally, pulsed current-voltage measurements with various quiescent biases such as (Vgsq, Vdsq) = (-1, 5), (-1, 10) and (-4, 0) indicate a clear correlation between dislocation density and current collapse in the devices under study, where lower density of dislocation in the GaN buffer results in better recovery of the drain current. The vertical breakdown voltage increases from 360 V to 446 V as the dislocation density decreases from 10.55×10^8 cm-2 to 5.4×10^8 cm-2, respectively.
The second part of the study focuses on AlGaN/GaN HEMTs grown with different pairs of Al0.8Ga0.2N/Al0.2Ga0.8N superlattice layers. As the superlattice pair increases from 50 to 80 pairs, the dislocation density decreases from 8.8×10^8 cm-2 to 8.01×10^8 cm-2, resulting in an increase of vertical breakdown voltage up to 544 V. Moreover, pulsed I-V measurements show better current recovery as the superlattice increases from 50 to 80 pairs.
Finally, current transient spectroscopy method is used to determine the time constant of electron detrapping and its activation energy. The activation energies, 0.37 eV/0.30 eV, of the device with 50 pairs of SL, 0.50 eV/0.32 eV, of the device with 60 pairs of SL, and 0.35 eV/0.23 eV, of the device with 80 pairs of SL, are extracted from the current recovery curves after two different off-state stress conditions. A detailed analysis of the current transient spectroscopy indicates the trap locations in the GaN buffer layer. This systematic and detailed study of the dynamic buffer response of GaN HEMTs-on-Si is beneficial to the development of high reliability GaN HEMTs for high power device applications.
關鍵字(中) ★ 氮化鎵
★ 超晶格
★ 高電子遷移率電晶體
★ 動態特性
關鍵字(英) ★ HEMT
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 導論 1
1.1 前言 1
1.2 氮化鎵材料特性 3
1.2.1 氮化鎵極化效應 3
1.2.2 氮化鎵成長於矽基板 5
1.3 研究動機 7
1.4 論文架構 9
第二章 超晶格組成對元件特性的影響 10
2.1 前言 10
2.2 HEMTs元件製程流程 11
2.2.1 不同超晶格結構之緩衝層介紹 11
2.2.2 元件製程流程 13
2.3 AlInN HEMTs 元件直流特性分析 17
2.3.1 歐姆接觸特性 17
2.3.2 轉移及輸出特性 20
2.3.3 崩潰特性 22
2.4 動態特性原理 25
2.4.1 動態特性量測方法 25
2.4.2 動態電阻原理 26
2.5 動態特性分析 27
2.5.1 脈衝量測 27
2.5.2 背閘極偏壓量測 (基板施加負偏壓) 29
2.6 本章總結 31
第三章 超晶格對數對元件特性的影響 32
3.1 前言 32
3.2 不同對數之超晶格緩衝層介紹 32
3.3 AlGaN HEMTs 元件直流特性分析 35
3.3.1 歐姆接觸特性 35
3.3.2 轉移及輸出特性 36
3.3.3 崩潰特性 38
3.4 動態特性分析 42
3.4.1 脈衝量測 42
3.4.2 背閘極偏壓量測 (基板施加負偏壓) 43
3.5 缺陷能階萃取 45
3.5.1 電流暫態分析相關研究 45
3.5.2 電流暫態分析萃取活化能 48
3.5.3 缺陷能階探討 53
3.6 本章總結 54
第四章  結論與未來展望 55
參考文獻 56
參考文獻 [1]Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, “High breakdown voltage schottky rectifier fabricated on bulk n-GaN substrate”, Solid-State Electronics, Vol. 50, pp. 1744-1747, 2006.
[2]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff and L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[3]A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost, “Metalorganic chemical vapor phase epitaxy of gallium‐nitride on silicon”, Physica Status Solidi (c), Vol. 0, pp. 1583-1606, 2003.
[4]Y. Ni, Z. He, F. Yang, D. Zhou, Y. Yao, G. Zhou, Z. Shen, J. Zhong, Y. Zhen, Z. Wu, B. Zhang, and Y. Liu, “Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si(111) system”, Japanese Journal of Applied Physics, Vol. 54, 2015.
[5]J. R. Gong, C. W. Huang, S. F. Tseng, T. Y. Lin, K. M. Lin, W. T. Liao, Y. L. Tsai, B. H. Shi, C. L. Wang, “Behaviors of AlxGa1−xN (0.5⩽x⩽1.0)/GaN short period strained-layer superlattices on the threading dislocation density reduction in GaN films”, Journal of Crystal Growth, Vol. 260, pp. 73-78, 2004.
[6]Z. Liu, X. L. Wang, J. X. Wang, G. X. Hu, L. C. Guo and J. M. Li, “The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si (111) substrates”, Chinese Physics, Vol. 16, pp. 1467-1471, 2007.
[7]L. W. Sang, Z. X. Qin, H. Fang, X. R. Zhou, Z. J. Yang, B. Shen, and G. Y. Zhang, “Study on threading dislocations blocking mechanism of GaN∕AlxGa1−xN superlattices”, Applied Physics Letters, Vol. 92, 2008.
[8]Z. Chen, L. Li, Y. Zheng, Y. Ni, D. Zhou, L. He, F. Yang, L. He, Z. Wu, B. Zhang and Y. Liu, “Influence of the AlN/GaN superlattices buffer thickness on the electrical properties of AlGaN/GaN HFET on Si substrate”, 2016 SSLChina: IFWS, pp. 89-92, Beijing, China, 2016.
[9]Q. Yang, Z. Li, L. Pan, W. Luo, X. Dong, “Role of different kinds of superlattices on the strain engineering of GaN films grown on Si (111)”, Superlattices and Microstructures, Vol. 109, pp. 249-253, 2017.
[10]A. Tajalli, M. Meneghini, R. Kabouche, I. Abid, M. Zegaoui, R. Püsche, J. Derluyn, S. Degroote, M. Germain, F. Medjdoub, G. Meneghesso, “Superlattice GaN-on-silicon heterostructures with low trapping in 1200 V”, WOCSDICE 2019, Cabourg, France, Jun 2019.
[11]J. Su, E. A. Armour, B. Krishnan, S. M. Lee, and G. D. Papasouliotis, “Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor”, Journal of Materials Research, Vol. 30, pp. 2846-2858, 2015.
[12]Alan Wadsworth, The Parametric Measurement Handbook, 3rd Edition, July, 2013.
[13]陳昱志,「矽基氮化鎵高電子遷移率電晶體通道層與緩衝層之成長與材料特性分析」,國立中央大學,碩士論文,民國108年。
[14]M. Ťapajna, R. J. T. Simms, Y. Pei, U. K. Mishra, and M. Kuball, “Integrated optical and electrical analysis: identifying location and properties of traps in AlGaN/GaN HEMTs during electrical stress”, IEEE Electron Device Letters, Vol. 31, No. 7, pp. 662-664, 2010.
[15]G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, A. Cester, U. K Mishra and E. Zanoni, “Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements”, Semiconductor Science and Technology, Vol. 28, No. 7, pp. 1-8, 2013.
[16]J. Hu, S. Stoffels, S. Lenci, B. Bakeroot, R. Venegas, G. Groeseneken, and S. Decoutere, “Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode”, Applied Physics Letters, Vol. 106, 2015.
[17]M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, and P. Moens, “Temperature-dependent dynamic RON in GaN-based MIS-HEMTs: role of surface traps and buffer leakage”, IEEE Transactions on Electron Devices, Vol. 62, pp. 782-787, 2015.
[18]M. J. Anand, G. I. Ng, S. Arulkumaran, B. Syamal and X. Zhou, “Distribution of trap energy level in AlGaN/GaN high-electron-mobility transistors on Si under ON-state stress”, Applied Physics Express, Vol. 8, No. 10, 2015.
[19]X. Zheng, S. Feng and Y. Zhang, “A current-transient method for identifying the spatial positions of traps in GaN-based HEMTs”, 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 2018.
[20]J. Joh and J. A. del Alamo, “A current-transient methodology for trap analysis for GaN high electron mobility transistors”, IEEE Transactions on Electron Devices, Vol. 58, No. 1, pp. 132-140, 2011.
[21]D. Bisi, M. Meneghini, M. V. Hove, D. Marcon, S. Stoffels, T.-L. Wu, S. Decoutere, G. Meneghesso, and E. Zanoni, “Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate”, Phys. Status Solidi A, Vol. 212, No. 5, pp. 1122-1129, 2015.
[22]A. Khandelwal, G. Dutta, A. DasGupta and N. DasGupta, “Trapping phenomenon in AlInN/GaN HEMTs: a study based on drain current transient spectroscopy”, The Physics of Semiconductor Devices, Proceedings of IWPSD 2017, pp. 219-223, Delhi, India, 2017.
[23]D. K. Schroder, Semiconductor Material and Device Characterization, 3 rd Edition, John Wiley & Sons, Inc., New Jersey, 2006.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明