參考文獻 |
[1] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[2] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[3] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-StateCircuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.2113, Aug. 2009.
[6] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[7] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition,” IEEE Int. Symp. on VLSI Design, Automation and Test, Jun. 2012, pp. 56-57.
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[9] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[10] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[11] K.-H. Tsai and S.-I. Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 276-277, Feb. 2009.
[12] C. Lee and S.-I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 196-596, Feb. 2007.
[13] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” Proc. Eur. Solid State Circuits Conf., pp. 472-475, Sept. 2007.
[14] D. Shin and K. J. Koh, "An Injection Frequency-Locked Loop—Autonomous Injection Frequency Tracking Loop With Phase Noise Self-Calibration for Power-Efficient mm-Wave Signal Sources," in IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 825-838, March 2018.
[15] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz quadrature PLL in 45nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494-495, Feb. 2009.
[16] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz clock generator using a harmonic-locked PD in 0.13-µm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404-408, May 2008.
[17] K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. VLSI Design, Automation and Test, pp.113-116, Apr. 2008.
[18] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop With A Multimode LC-Based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[19] S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[20] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[21] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at second pole frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp. 80-88, Jan. 2012.
[22] B.-Y. Lin and S.-I. Liu, “A 132.6-GHz phase-locked loop in 65 nm digital CMOS,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, no. 10, pp. 617-621, Oct. 2011.
[23] T.-Y. Chang, C.-S. Wang, and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 81-84, Nov. 2011.
[24] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[25] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[26] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C.-P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, and M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[27] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[28] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2635-2649, Nov. 2011.
[29] C.-Y. Wu, M.-C. Chen, and Yi-Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-µm CMOS for V-Band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[30] S. Choi, S. Yoo, and J. Choi, “A 185 fsrms -integrated-jitter and −245 dB FOM PVT-robust ring-VCO-based injection-locked clock multiplier with a continuous frequency-tracking loop using a replica-delay cell and a dual-edge phase detector,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2016, pp. 194–195.
[31] J.-C. Chien et al., “A pulse-position-modulation phase-noise-reduction technique for a 2-to-16 GHz injection-locked ring oscillator in 20 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2014, pp. 52–53.
[32] Y.-C. Huang and S.-I. Liu, “A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417–428, Feb. 2013.
[33] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid State Circuits, vol. 39, no. 9, pp. 1415 1424, Sep. 2004
[34] G. Reddy Gangas ani, P. Kinget, “Injection-lock dynamics in non-harmonic oscillators,” Circuits and Systems 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, pp. 4 1678, 2006.
[35] A. Mirzaei and H. Darabi, “Mutual pulling between two oscillators,” IEEE J. Solid State Circuits, vol. 49, no. 2, pp. 360 372, Feb. 2014.
[36] Xuqiang Zheng, Fangxu Lv, Lei Zhou, Danyu Wu, Jin Wu, Chun Zhang, Woogeun Rhee and Xinyu Liu, “Frequency-Domain Modeling and Analysis of Injection-Locked Oscillators,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp.1651-1664, June. 2020.
[37] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm wave applications,” IEEE J. Solid State Circuits, 46, no. 11, pp.2635-2649, Nov. 2011.
[38] C.-Y. Wu, M. C. Chen, and Yi Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18 µ m CMOS for V-Band applications,” IEEE Trans. Microw Theory Tech., 57, no. 7, pp. 1629-1636, Jul. 2009.
[39] C.-L. Wei, T.-K. Kuan, and S.-I. Liu, “A Subharmonically Injection Locked PLL With Calibrated Injection Pulsewidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 62, no. 6, pp. 548-552, Jun. 2015.
[40] Y. C. Huang and S. I. Liu, “A 2.4 GHz subharmonically injection locked PLL with self-calibrated injection timing,” IEEE J. Solid State Circuits, vol. 48, no. pp. 417-428, Feb. 2013.
[41] F. Liang and K. J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 90-92.
[42] P.-H. Feng, and S.-H. Liu, “A Current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523-1532, Apr. 2013.
[43] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTTS Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-4.
[44] Hong-Yeh Chang, Chun-Ching Chan, Ian Yi-En Shen, Yen-Liang Yeh, Shu-Yan Huang, "Design and Analysis of CMOS Low Phase Noise Low Jitter Subharmonically Injection-Locked VCO With FLL Self-Alignment Technique, " IEEE Trans. Microw. Theory Tech., vol. 64, pp. 4632-4645, 2016.
[45] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, " 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100-103.
[46] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[47] 高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
[48] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國 100 年。
[49] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[50] Akshay Visweswaran, Robert Bogdan Staszewski, and John R. Long, “A Low Phase Noise Oscillator Principled on Transformer-Coupled Hard Limiting,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 300–311, Feb. 2014
[51] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107–1118, May 2005.
[52] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75-78.
[53] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[54] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[55] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “Superharmonic injection-locked frequency dividers,” IEEE ICCSC 2008, pp. 812–815.
[56] Z. Deng and A. M. Niknejad, “The speed-power trade-off in the design of CMOS true-single-phase-clock dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2457–2465, Nov. 2010.
[57] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019–1022, Aug. 1990.
[58] B.-Y. Lin, and S.-I. Liu, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp. 617–621, Oct. 2011.
[59] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with -104.5 dBc/Hz at 10- kHz offset using SiGe HBT ECL PFD,” in Proc. Asia–Pacific Microw. Conf., pp. 373–376, Dec. 2009.
[60] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[61] Jeng-Han Tsai, Chia-Hsiang Chao, and Hung-Da Shih, “A X-band Fully Integrated CMOS Frequency Synthesizer,” in Proc. Asia-Pacific Microw. Con., Dec. 2012.
[62] 呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國 105 年。
[63] J.F Huang, “Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL,” IEEE Communications and Networking in China (CHINACOM), pp. 276–280, Aug. 2013.
[64] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mw, 10 GHz all digital frequency systhesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[65] Jeng-Han Tsai, Chin-Yi Hsu, and Chia-Hsiang Chao, “An X-Band 9.75/10.6 GHz Low-Power Phase-Locked Loop using 0.18-μm CMOS Technology,” Proceedings of the 10th European Microwave Integrated Circuits Conference, Sept. 2015.
[66] Keum-Won Ha, Jeong-Yun Lee, Sangyong Park, and Donghyun Baek, “A Dual-mode Signal Generator using PLL for X-band Radar Sensor Applications,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sept. 2017.
[67] Hamed Alsuraisry, Chun-Hin Yim, Jen-Hao Cheng, Jeng-Han Tsai, Tian-Wei Huang, “A X-band frequency synthesizer for FMCW radar in 180-nm CMOS,” in Proc. Asia-Pacific Microw. Con., Dec. 2015.
[68] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5 10-GHz clock multiplier unit with 0.22 ps RMS jitter in standard 0.18-μm CMOS,” IEEE J. Solid State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[69] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTT S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-4.
[70] F. Liang and K. J. Hsiao, “An injection locked ring PLL with self aligned injection window,” in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 90-92.
[71] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[72] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection locked oscillator with a highly digital tuning Loop,” IEEE J. Solid State Circuits, vol. 44, pp. 1391-1400, May 2009.
[73] I T. Lee, Y. J. Chen, S. I. Liu, C. P. Jou, F. L. Hsueh, and H. H. Hsieh, “A divider less sub-harmonically injection-locked PLL with self-adjusted injection timing” IEEE Int. Solid State Circuits Conf, Tech. Dig., pp. 414-415, Feb. 2013.
[74] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[75] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[76] H. T. Bui et al., “Design of a high-speed differential frequency tovoltage converter and its application in a 5 GHz frequency locked loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no.4, pp. 766-774, Apr. 2008.
[77] Sonnet Software Inc., Sonnet User’s Manual, Release 13, North Syracuse, NY, Jun. 2011.
[78] 李昇洺,V及D頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[79] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback,” 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100–103.
[80] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage- ontrolled oscillator with FLL self-alignment technique,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.
[81] H.-Y. Chang, C.-C. Chan, I. Y.-E. Shen, Y.-L. Yeh, S.-Y. Huang, "Design and Analysis of CMOS Low-Phase-Noise Low-Jitter Subharmonically Injection-Locked VCO With FLL Self-Alignment Technique", IEEE Trans. Microw. Theory Techn., vol. 64, pp. 4632–4645, 2016.
[82] H.-Y. Chang, C.-C. Chan, S.-M. Li, H.-N. Yeh, I. Y.-E. Shen, and G.-L. Huang, “Design and analysis of CMOS low phase noise low quadrature error V-band sub-harmonically injection-locked quadrature FLL,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 06, pp. 2851–2866, June 2018.
[83] D. Shin, S. Raman and K. J. Koh, “A mixed-mode injection frequency-locked loop for self-calibration of injection locking range and phase noise in 0.13μm CMOS,” 2016 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 50–51.
[84] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “A PVT-robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers,” 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324–325.
[85] H.-S. Yang, I. Y.-E. Shen, and H.-Y. Chang, “A K-band CMOS low-phase-noise sub-harmonically injection-locked QVCO with divider-less frequency-tracking loop,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, June 2019, pp. 2–7.
[86] J. Zhang, Y. Peng, H. Liu, Yunqiu, C. Zhao and K. Kang “A 21.7-to-41.7-GHz injection-locked LO generation with a narrowband low-frequency input for multiband 5G communications,” IEEE Trans. Microw. Theory Techn., Early Access Article, 2019.
[87] D. Dunwell and A. C. Carusone, “Modeling oscillator injection locking using the phase domain response,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2823–2833, Nov. 2013.
[88] S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002.
[89] H.-Y. Chang and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 46-59, Jan. 2012.
[90] T. Y. Chang, C. S. Wang and C. K. Wang, "A low power W-band PLL with 17-mW in 65-nm CMOS technology," IEEE Asian Solid-State Circuits Conference Tech. Dig., Nov. 2012, pp. 81-84.
[91] S. Kang, J. C. Chien and A. M. Niknejad, "A W-Band Low-Noise PLL With a Fundamental VCO in SiGe for Millimeter-Wave Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2390-2404, Oct. 2014.
[92] X. Yi, Z. Liang, G. Feng, C. C. Boon and F. Meng, "A 93.4-to-104.8 GHz 57 mW fractional-N cascaded sub-sampling PLL with true in-phase injection-coupled QVCO in 65 nm CMOS," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, 2016, pp. 122-125.
[93] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[94] Kwangwon Park, Dongkyo Kim, Iljin Lee, and Sanggeun Jeon, “W-Band Injection-Locked Frequency Octupler Using a Push–Push Output Structurey,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 12, pp. 822-825, Dec. 2019.
[95] Yue Chao, Lianming Li, and Howard Cam Luong, “An 86-to-94.3GHz Transmitter with 15.3dBm Output Power and 9.6% Efficiency in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 346–348.
[96] Zhiqiang Huang and Howard C. Luong, “An 82–107.6-GHz Integer-N ADPLL Employing a DCO With Split Transformer and Dual-Path Switched-Capacitor Ladder and a Clock-Skew-Sampling Delta–Sigma TDC,” IEEE J. Solid-State Circuits, vol. 54, no. 2, pp.358-367, Feb. 2019.
[97] Kai-Wen Tan, Ta-Shun Chu, and Shawn S. H. Hsu, “A 76.2–89.1 GHz Phase-Locked Loop With 15.6% Tuning Range in 90 nm CMOS for W-Band Applications,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 8, pp. 538-540, Aug. 2015.
[98] 楊瀚森,微波及毫米波低相位雜訊鎖相迴路與無除頻器次諧波注入鎖定四相位鎖頻迴路,國立中央大學電機工程研究所碩士論文,民國108年。
[99] 沈毅恩,K頻段互補式金氧半場效電晶體低功耗低相位雜訊四相位時脈產生器之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[100] S. Mondal, R. Singh, and J. Paramesh, “A reconfigurable 28/37 GHz hybrid-beamforming MIMO receiver with inter-band carrier aggregation and RF-domain LMS weight adaptation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 72–74.
[101] B. Ustundag, K. Kibaroglu, M. Sayginer, and G. Rebeiz, “A wideband high-power multi-standard 23–31 GHz 2×2 quad beamformer chip in SiGe with >15 dBm OP1dB per channel,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2018, pp. 60–63.
[102] Z. Chen et al., “A 256-QAM 39 GHz dual-channel transceiver chipset with LTCC package for 5G communication in 65 nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2018, pp. 1476–1479.
[103] B. Sadhu et al., “A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3373–3391, Dec. 2017. |