博碩士論文 107022602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.148.108.144
姓名 阿孜孜(Azizi Dermawan)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例
(Assessing the Applicability of a Physically-based Rainfall-induced Landslide Model at a Hyper-Local Slope with Different Digital Elevation Models)
相關論文
★ 應用最大熵法於蒙古山區進行森林樹種分類★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展
★ 都市化與發展:對海地永續發展之意涵★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例
★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例★ 融合光學衛星影像及地形資訊進行崩塌地之判釋
★ 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例★ 都市三維結構變遷之分析-以臺灣臺北市為例
★ 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例
★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例★ 分析降雨及不透水面對台南水患發生之影響
★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估★ 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例
★ 母岩裸露指標之建立並應用於崩塌判釋與監測★ 應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 極小尺度(hyper-local)邊坡之崩塌災害之風險評估為一相當重要之課題,由一些過去案例發現,儘管小尺度邊坡之崩塌面積很小,但仍可能致災性極高,特別是崩塌的影響範圍與地方居民高頻度活動的地區(如道路、民居等)重疊時。過去研究使物理型之崩塌模式進行災害預測或評估時,通常需要使用相當高空間解析度的地形參數。過去已有相關研究試驗了使用不同的空間解析度的數值高程模型(Digital Elevation Model, DEM)對崩塌模式產生的影響,並建議使用高解析度的DEM(5-m至10-m)可針對崩塌的發生位置有更準確的預測結果。但是,對於崩塌崩落物(如土石流)於邊坡運動的模擬應用上,DEM適用之解析度範圍仍值得探討。本研究針對印尼東爪哇省,瑪琅區本多薩里村的一個由降雨誘發之極小型之崩塌進行研究,方法為應用一物理型的崩塌-土石流整合模式進行試驗。此試驗為使用不同來源、不同解析度的DEM進行崩塌位置預測以及土石流模擬並進行比較,以了解DEM空間解析度對模式預測所造成之影響。
在本研究中使用了三種不同來源的DEM,包含(1)8公尺之印尼國家標準數值高程模型(8-m ArcDEM),(2)使用即時動態全球定位系統測量生成的5公尺解析度之數值高程模型(5-m RtkDEM),以及和(3)由無人飛航照產製之2公尺數值高程模型(2-m UavDEM)。在模式的應用上,本研究於現地採集土壤樣本並進行實驗室實驗以獲得模式所需之土壤物理參數,同時在當地雨量站收集歷史之日雨量記錄。研究結果發現,使用2-m UavDEM可以更準確地預測崩塌位置,而其他DEM則有較明顯的預測錯誤情形。另外,使用2-m UavDEM在模擬研究地點的土石流(崩塌影響範圍)也有較不錯的結果。本研究成果並顯示針對及小尺度邊坡進行邊坡穩定評估的重要性,對於提高當地社區對崩塌災害之認知、防治有其助益,使之能減少山坡社區之崩塌災害風險。
摘要(英) The risk assessment of landslide hazard over small (hyper-local) slopes is crucial because several cases have revealed that, a small landslide can be fatal despite its small size, especially when the affected area overlaps with the residential area. The prediction of the hyper-local landslide generally requires topographic parameters with high spatial resolution when the physically-based modeling approach is applied. Previous studies have examined different digital elevation models (DEMs) and suggested that finer resolution DEMs (5-m to 10-m) produced more accurate results for predicting the landslide initiation points. However, the suitable DEM resolution used for simulating the damaged area affected by landslide runout (or debris flow) is still questionable. Thus, the comparison of different resolutions of topographic datasets will be examined in this study, for simulating a rainfall-induced landslide and its affected area at a hyper-local slope in Bendosari village, Malang district, East-java, Indonesia.
In this study, three different DEMs were used in an integrated landslides and debris flows modeling; they are (1) the 8-m Indonesian National Standard Digital Elevation Model (ArcDEM), (2) the 5-m DEM generated by real-time kinematic-global positioning system survey (RtkDEM) and (3) the 2-m DEM constructed by the unmanned aerial vehicle mapping (UAV). To perform the model, soil parameters were obtained from the laboratory test, while the daily rainfall records were collected at a local station. The result shows that the shallow landslide is more accurately predicted by the 2-m UavDEM, and it has less overestimation than the 5-m RtkDTM. For 8-m ArcDEM, it also predicts false landslides in the study site. The result indicates the 2-m UavDEM gives a more effective response for simulating the landslide and debris flow in the study site and also shows its significance to promote local community awareness on slope stability for reducing landslide disaster risks.
關鍵字(中) ★ DEM解析度
★ 極小尺度邊坡
★ 崩塌-土石流整合模式
★ 降雨型崩塌
★ 土石流
關鍵字(英) ★ DEM resolution
★ hyper-local slope
★ integrated landslide-debris flow model
★ rainfall-induced landslide
★ debris flow
論文目次 Page
中文摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vii

Chapter 1. Introduction 1
1.1. Background 1
1.2. Problem Statements 4
1.3. Importance and benefits 6
1.4. Structure of the thesis 7
Chapter 2. Literature Review 8
2.1. Landslide modeling 8
2.2. Landslide studies on hyper-local slopes 9
2.3. The application of DEM data 9
2.4. Overview of LEWS’s development 10
Chapter 3. Study Area 12
3.1. The location of study area 12
3.2. InaRISK Map 17
3.3. Documentation of the study area 18
3.4. Workflow of study 20
Chapter 4. The Application of Integrated Landslide and Debris Flow Model 23
4.1. Critical rainfall model 23
4.2. Debris Flow Model 24
4.3. Rainfall Data 25
4.3.1. Available stations 25
4.3.2. Official records 26
4.4. Digital elevation model 27
4.4.1. ArcDEM 27
4.4.2. RtkDEM 27
4.4.3. UavDEM 29
4.5. Flow Algorithm 30
4.6. DEM datasets 32
4.7. Soil physical parameters 34
4.8. Root cohesion 37
Chapter 5. Results 39
5.1. Constructing Digital Elevation Models 39
5.2. Critical rainfall maps 42
Chapter 6. Discussions 49
6.1. The construction of DEM datasets 49
6.2. The application of different DEM datasets 49
6.3. The applicability of topographic data in landslide risk assessment 52
Chapter 7. Conclusions 55
References 56
參考文獻 Aditiya, A., Efendi, J., & Syafii, A. (2014). InaCORS : Infrastructure of GNSS CORS in Indonesia. FIG Congress 2014, Engaging the Challenges, Enhancing the Relevance, 16 – 21 June 2014, 6853.
Beretta, F., Shibata, H., Cordova, R., Azambuja, J., Peroni, R. de L., & Costa, J. F. C. L. C. (2018). Topographic modelling using UAVs compared with traditional survey methods in mining. REM, Int . Eng. J, 71(3), 463–470.
BIG. (2018). DEMNAS. Badan Informasi Geospatial Indonesia. http://tides.big.go.id/DEMNAS
BNPB. (2018a). InaRISK. http://inarisk.bnpb.go.id
BNPB. (2018b). Risiko bencana indonesia. http://inarisk.bnpb.go.id
BNPB. (2019). Bencana Tahun 2011 -2018. In BNPB. http://dibi.bnpb.go.id/dibi
Bonk, R. (2007). Digital terrain modelling: Development and applications in a policy support environment. Scale-Dependent Effect of Input Data Design on DEM Accuracy, 9783540367307.
Borga, M., Fontana, G. D., Gregoretti, C., & Marchi, L. (2002). Assessment of shallow landsliding by using a physically based model of hillslope stability. Hydrological Processes, 16(2002), 2833–2851. https://doi.org/10.1002/hyp.1074
Borga, M., Tonelli, F., & Selleroni, J. (2004). A physically based model of the effects of forest roads on slope stability. Water Resources Research, 40, 1–11. https://doi.org/10.1029/2004WR003238
Cheng, P. (2019a). High Accuracy Digital Surface Model ( DSM ) Generation , Orthorectification and Mosaicking Using Phase One Aerial Cameras. Acrs, 1–9.
Cheng, P. (2019b). Comparison of Bingham Mine Landslide DSMs Using Pleiades Tri-Stereo Satellite Data. 40th Asian Conference on Remote Sensing 2019, Acrs, 1–9.
Chiang, S., Chang, K., Mondini, A. C., Tsai, B., & Chen, C. (2012). Simulation of event-based landslides and debris flows at watershed level. Geomorphology, 138, 306–318. https://doi.org/10.1016/j.geomorph.2011.09.016
Collin, J. G., Hung, J. C., Lee, W. S., & Munfakh, G. (2001). Soil Slope and Embankment Design Reference Manual (Issue 877).
Dayamit, O. M., Pedro, M. F., Ernesto, R. R., & Fernando, B. L. (2015). Digital elevation model from non-metric camera in UAS compared with LIDAR technology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(1W4), 411–414. https://doi.org/10.5194/isprsarchives-XL-1-W4-411-2015
Dictionary.com. (2018). Hyperlocal _ Definition of Hyperlocal at Dictionary.
Elam, M., & Bertilsson, M. (2003). Consuming , Engaging and Confronting Science , The Emerging Dimensions of Scientific Citizenship. European Journal of Social Theory, 6(2), 233–251.
Geotechdata.info. (2013a). Angle of Friction. http://geotechdata.info/parameter/angle-of-friction.html
Geotechdata.info. (2013b). Cohesion. http//geotechdata.info/parameter/cohesion.htlm
Gutiérrez-martín, A., Herrada, M. Á., Yenes, J. I., & Castedo, R. (2019). Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration. Natural Hazards and Earth System Sciences, 19, 721–736. https://doi.org/10.5194/nhess-19-721-2019
Guzzetti, F, Gariano, S. ., Peruccacci, S., Brunetti, M. ., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973. https://doi.org/10.1016/j.earscirev.2019.102973
Guzzetti, Fausto, Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation : a review of current techniques and their application in a multi-scale study , Central Italy.
Hidayat, R., Sutanto, S. J., Hidayah, A., & Ridwan, B. (2019). Development of a Landslide Early Warning System in Indonesia. Geosciences, 9, 1–17. https://doi.org/10.3390/geosciences9100451
Hillel, D. (1980). Fundamentals of Soil Physics. Academic Press.
Hjerdt, K. N., Mcdonnell, J. J., Seibert, J., & Rodhe, A. (2004). A new topographic index to quantify downslope controls on local drainage. Water Resources Research, 40(May), 1–6. https://doi.org/10.1029/2004WR003130
Honda, K., Shrestha, A., Chinnachodteeranun, R., & Hung, N. D. (2008). Landslide Early Warning System for Rural Community as an Application of Sensor Asia. World Conference on Agricultural Information and IT, May 2014, 283–288.
House, D. H., & Keyser, J. C. (2017). Foundations of Physically Based Modeling and Animation. In CRC Press. CRC Press, Taylor & Francis Group. http://www.taylorandfrancis.com
Hunt, B. (1994). Newtonian fluid mechanics treatment of debris flow and avalanches. Journal of Hydraulic Engineering, 120, 1350–1363.
Jia, N., Mitani, Y., Xie, M., & Djamaluddin, I. (2012). Computers and Geotechnics Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area. Computers and Geotechnics, 45, 1–10. https://doi.org/10.1016/j.compgeo.2012.04.007
Julzarika, A. (2019). Indonesian DEMNAS : DSM or DTM ? 31–36.
Kandris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of Wireless Sensor Networks : An Up-to-Date Survey Applications of Wireless Sensor Networks : An Up ‐ to ‐ Date Survey. February. https://doi.org/10.3390/asi3010014
Lai, J., & Tsai, F. (2019). Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing. 1–25.
Lepore, C., Arnone, E., Noto, L. V., Sivandran, G., & Bras, R. L. (2013). Physically based modeling of rainfall-triggered landslides: A case study in the Luquillo forest, Puerto Rico. Hydrology and Earth System Sciences, 17(9), 3371–3387. https://doi.org/10.5194/hess-17-3371-2013
Liu, C., Aryastana, P., Liu, G.-R., & Huang, W.-R. (2020). Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244(January), 105032. https://doi.org/10.1016/j.atmosres.2020.105032
Martinovic, K., Gavin, K., Reale, C., & Mangan, C. (2018). Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network. Geomorphology, 306, 40–50. https://doi.org/10.1016/j.geomorph.2018.01.006
Montgomery, D. R., & Dietrich, W. E. (1994). A Physically-based Model For The Topographic Control On Shallow Landsliding. Water Resources Research, 30(4), 1153–1171.
Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital Terrain Modeling : A Review of Hydrological, Geomorphological and Biological Applications. Hydrological Processes, 5(September 1990), 3–30.
Murthy, V. N. S. (2002). Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (1st ed.). CRC Press.
O’Callaghan, J. F., & Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics and Image Processing, 28(328–344). https://doi.org/10/1016/S0734-189X(84)80011-0
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A., Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T., & Wheaton, J. M. (2015). Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Science Reviews, 148, 174–193. https://doi.org/10.1016/j.earscirev.2015.05.012
Permana, D. S. S., Hutapea, T. D., Praja, A. S., Paski, J. A. I., Makmur, E. E. S., Haryoko, U., Umam, I. H., Saepudin, M., & Adriyanto, R. (2019). The Indonesia In-House Radar Integration System ( InaRAISE ) of Indonesian Agency for Meteorology Climatology and Geophysics ( BMKG ): Development , Constraint , and Progress. IOP Conference Series: Earth and Environmental Science, 303(August). https://doi.org/10.1088/1755-1315/303/1/012051
Petrie, G. (1990). Developments in analytical instrumentation. ISP, 45, 61–89. https://doi.org/0924-2716/90/$03.50
Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1), 59–79. https://doi.org/10.1002/hyp.3360050106
Rosso, R., Rulli, M. C., & Vannucchi, G. (2006). A physically based model for the hydrologic control on shallow landsliding. Water Resources Research, 42(6), 1–16. https://doi.org/10.1029/2005WR004369
Santosa, S., & Suwarti, T. (1992). Geology of the Malang Quadrangle, Jawa. In S. Gafoer, T. O. Simandjuntak, N. Ratman, & S.Atmawinata (Eds.), Department of Mines and Energy. Department of Mines and Energy Indonesia.
Schilirò, L., Cevasco, A., Esposito, C., & Scarascia, G. (2018). Shallow landslide initiation on terraced slopes : inferences from a physically based approach. Geomatics, Natural Hazards and Risk, 9, 295–324. https://doi.org/10.1080/19475705.2018.1430066
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., & Schaub, T. (2014). The variability of root cohesion as an influence on. Canadian Geotechnical Journal, 1024(June), 995–1024. https://doi.org/10.1139/cgj-38-5-995
Seok, M., Onda, Y., Uchida, T., & Kwan, J. (2016). Effects of soil depth and subsurface fl ow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40–54. https://doi.org/10.1016/j.geomorph.2016.07.031
Setiawan, B., & Putra, N. (2017a). Pemetaan Daerah Rawan Longsor di Kecamatan Pujon Menggunakan Metode Analytic Hierarchy Process (AHP). Jurnal Tanah Dan Sumberdaya Lahan, 4(2010), 567–576.
Sickle, J. Van. (2015). GPS for Land Surveyors (J. Van Sickle (ed.); 4th Editio). CRC Press, Taylor & Francis Group.
Sidle, R. C., & Ochiai, H. (2006). LANDSLIDES Processes , Prediction , and Land Use American Geophysical Union. American Geophysical Union.
Sy, V. De, Schoorl, J. M., Keesstra, S. D., Jones, K. E., & Claessens, L. (2013). Landslide model performance in a high resolution small-scale landscape. Geomorphology, 190, 73–81. https://doi.org/10.1016/j.geomorph.2013.02.012
Tarboton, D. G. (1997). A new method for determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.
Tarolli, P. (2014). Geomorphology High-resolution topography for understanding Earth surface processes : Opportunities and challenges. Geomorphology, 216, 295–312. https://doi.org/10.1016/j.geomorph.2014.03.008
Tarolli, P., Calligaro, S., Cazzori, F., Fontana, G. D. G. D., Cazorzi, F., & Fontana, G. D. G. D. (2013). Recognition of Surface flow process influenced by roads and trails in mountains areas using high-resolution topography. European Journal of Remote Sensing, 46(1), 176–197. https://doi.org/10.5721/EujRS20134610
Teja, T. S., & Dikshit, A. (2019). Determination of Rainfall Thresholds for Landslide Prediction Using an Algorithm-Based Approach : Case Study in the Darjeeling Himalayas , India. Geosciences, 9(302).
Viet, T. T., Lee, G., Thu, T. M., & An, H. U. (2016). Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS. Natural Hazards Review, 18(2), 1–12. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000233
Wang, C., Esaki, T., Xie, M., & Qiu, C. (2006). Landslide and debris-flow hazard analysis and prediction using GIS in Minamata-Hougawachi area, Japan. Environmental Geology, 51(1), 91–102. https://doi.org/10.1007/s00254-006-0307-0
Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS, 4th ed. 696 pp.
Zhang, W., & Montgomery, D. R. (1994). Digital Elevation Model Grid Size, Landscape Representation, and Hydrologic Simulation. Water Resources Research, 30(4), 1019–1028.
指導教授 姜壽浩(Shou-Hao Chiang) 審核日期 2020-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明