參考文獻 |
Aditiya, A., Efendi, J., & Syafii, A. (2014). InaCORS : Infrastructure of GNSS CORS in Indonesia. FIG Congress 2014, Engaging the Challenges, Enhancing the Relevance, 16 – 21 June 2014, 6853.
Beretta, F., Shibata, H., Cordova, R., Azambuja, J., Peroni, R. de L., & Costa, J. F. C. L. C. (2018). Topographic modelling using UAVs compared with traditional survey methods in mining. REM, Int . Eng. J, 71(3), 463–470.
BIG. (2018). DEMNAS. Badan Informasi Geospatial Indonesia. http://tides.big.go.id/DEMNAS
BNPB. (2018a). InaRISK. http://inarisk.bnpb.go.id
BNPB. (2018b). Risiko bencana indonesia. http://inarisk.bnpb.go.id
BNPB. (2019). Bencana Tahun 2011 -2018. In BNPB. http://dibi.bnpb.go.id/dibi
Bonk, R. (2007). Digital terrain modelling: Development and applications in a policy support environment. Scale-Dependent Effect of Input Data Design on DEM Accuracy, 9783540367307.
Borga, M., Fontana, G. D., Gregoretti, C., & Marchi, L. (2002). Assessment of shallow landsliding by using a physically based model of hillslope stability. Hydrological Processes, 16(2002), 2833–2851. https://doi.org/10.1002/hyp.1074
Borga, M., Tonelli, F., & Selleroni, J. (2004). A physically based model of the effects of forest roads on slope stability. Water Resources Research, 40, 1–11. https://doi.org/10.1029/2004WR003238
Cheng, P. (2019a). High Accuracy Digital Surface Model ( DSM ) Generation , Orthorectification and Mosaicking Using Phase One Aerial Cameras. Acrs, 1–9.
Cheng, P. (2019b). Comparison of Bingham Mine Landslide DSMs Using Pleiades Tri-Stereo Satellite Data. 40th Asian Conference on Remote Sensing 2019, Acrs, 1–9.
Chiang, S., Chang, K., Mondini, A. C., Tsai, B., & Chen, C. (2012). Simulation of event-based landslides and debris flows at watershed level. Geomorphology, 138, 306–318. https://doi.org/10.1016/j.geomorph.2011.09.016
Collin, J. G., Hung, J. C., Lee, W. S., & Munfakh, G. (2001). Soil Slope and Embankment Design Reference Manual (Issue 877).
Dayamit, O. M., Pedro, M. F., Ernesto, R. R., & Fernando, B. L. (2015). Digital elevation model from non-metric camera in UAS compared with LIDAR technology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(1W4), 411–414. https://doi.org/10.5194/isprsarchives-XL-1-W4-411-2015
Dictionary.com. (2018). Hyperlocal _ Definition of Hyperlocal at Dictionary.
Elam, M., & Bertilsson, M. (2003). Consuming , Engaging and Confronting Science , The Emerging Dimensions of Scientific Citizenship. European Journal of Social Theory, 6(2), 233–251.
Geotechdata.info. (2013a). Angle of Friction. http://geotechdata.info/parameter/angle-of-friction.html
Geotechdata.info. (2013b). Cohesion. http//geotechdata.info/parameter/cohesion.htlm
Gutiérrez-martín, A., Herrada, M. Á., Yenes, J. I., & Castedo, R. (2019). Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration. Natural Hazards and Earth System Sciences, 19, 721–736. https://doi.org/10.5194/nhess-19-721-2019
Guzzetti, F, Gariano, S. ., Peruccacci, S., Brunetti, M. ., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973. https://doi.org/10.1016/j.earscirev.2019.102973
Guzzetti, Fausto, Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation : a review of current techniques and their application in a multi-scale study , Central Italy.
Hidayat, R., Sutanto, S. J., Hidayah, A., & Ridwan, B. (2019). Development of a Landslide Early Warning System in Indonesia. Geosciences, 9, 1–17. https://doi.org/10.3390/geosciences9100451
Hillel, D. (1980). Fundamentals of Soil Physics. Academic Press.
Hjerdt, K. N., Mcdonnell, J. J., Seibert, J., & Rodhe, A. (2004). A new topographic index to quantify downslope controls on local drainage. Water Resources Research, 40(May), 1–6. https://doi.org/10.1029/2004WR003130
Honda, K., Shrestha, A., Chinnachodteeranun, R., & Hung, N. D. (2008). Landslide Early Warning System for Rural Community as an Application of Sensor Asia. World Conference on Agricultural Information and IT, May 2014, 283–288.
House, D. H., & Keyser, J. C. (2017). Foundations of Physically Based Modeling and Animation. In CRC Press. CRC Press, Taylor & Francis Group. http://www.taylorandfrancis.com
Hunt, B. (1994). Newtonian fluid mechanics treatment of debris flow and avalanches. Journal of Hydraulic Engineering, 120, 1350–1363.
Jia, N., Mitani, Y., Xie, M., & Djamaluddin, I. (2012). Computers and Geotechnics Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area. Computers and Geotechnics, 45, 1–10. https://doi.org/10.1016/j.compgeo.2012.04.007
Julzarika, A. (2019). Indonesian DEMNAS : DSM or DTM ? 31–36.
Kandris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of Wireless Sensor Networks : An Up-to-Date Survey Applications of Wireless Sensor Networks : An Up ‐ to ‐ Date Survey. February. https://doi.org/10.3390/asi3010014
Lai, J., & Tsai, F. (2019). Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing. 1–25.
Lepore, C., Arnone, E., Noto, L. V., Sivandran, G., & Bras, R. L. (2013). Physically based modeling of rainfall-triggered landslides: A case study in the Luquillo forest, Puerto Rico. Hydrology and Earth System Sciences, 17(9), 3371–3387. https://doi.org/10.5194/hess-17-3371-2013
Liu, C., Aryastana, P., Liu, G.-R., & Huang, W.-R. (2020). Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244(January), 105032. https://doi.org/10.1016/j.atmosres.2020.105032
Martinovic, K., Gavin, K., Reale, C., & Mangan, C. (2018). Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network. Geomorphology, 306, 40–50. https://doi.org/10.1016/j.geomorph.2018.01.006
Montgomery, D. R., & Dietrich, W. E. (1994). A Physically-based Model For The Topographic Control On Shallow Landsliding. Water Resources Research, 30(4), 1153–1171.
Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital Terrain Modeling : A Review of Hydrological, Geomorphological and Biological Applications. Hydrological Processes, 5(September 1990), 3–30.
Murthy, V. N. S. (2002). Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (1st ed.). CRC Press.
O’Callaghan, J. F., & Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics and Image Processing, 28(328–344). https://doi.org/10/1016/S0734-189X(84)80011-0
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A., Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T., & Wheaton, J. M. (2015). Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Science Reviews, 148, 174–193. https://doi.org/10.1016/j.earscirev.2015.05.012
Permana, D. S. S., Hutapea, T. D., Praja, A. S., Paski, J. A. I., Makmur, E. E. S., Haryoko, U., Umam, I. H., Saepudin, M., & Adriyanto, R. (2019). The Indonesia In-House Radar Integration System ( InaRAISE ) of Indonesian Agency for Meteorology Climatology and Geophysics ( BMKG ): Development , Constraint , and Progress. IOP Conference Series: Earth and Environmental Science, 303(August). https://doi.org/10.1088/1755-1315/303/1/012051
Petrie, G. (1990). Developments in analytical instrumentation. ISP, 45, 61–89. https://doi.org/0924-2716/90/$03.50
Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1), 59–79. https://doi.org/10.1002/hyp.3360050106
Rosso, R., Rulli, M. C., & Vannucchi, G. (2006). A physically based model for the hydrologic control on shallow landsliding. Water Resources Research, 42(6), 1–16. https://doi.org/10.1029/2005WR004369
Santosa, S., & Suwarti, T. (1992). Geology of the Malang Quadrangle, Jawa. In S. Gafoer, T. O. Simandjuntak, N. Ratman, & S.Atmawinata (Eds.), Department of Mines and Energy. Department of Mines and Energy Indonesia.
Schilirò, L., Cevasco, A., Esposito, C., & Scarascia, G. (2018). Shallow landslide initiation on terraced slopes : inferences from a physically based approach. Geomatics, Natural Hazards and Risk, 9, 295–324. https://doi.org/10.1080/19475705.2018.1430066
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., & Schaub, T. (2014). The variability of root cohesion as an influence on. Canadian Geotechnical Journal, 1024(June), 995–1024. https://doi.org/10.1139/cgj-38-5-995
Seok, M., Onda, Y., Uchida, T., & Kwan, J. (2016). Effects of soil depth and subsurface fl ow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40–54. https://doi.org/10.1016/j.geomorph.2016.07.031
Setiawan, B., & Putra, N. (2017a). Pemetaan Daerah Rawan Longsor di Kecamatan Pujon Menggunakan Metode Analytic Hierarchy Process (AHP). Jurnal Tanah Dan Sumberdaya Lahan, 4(2010), 567–576.
Sickle, J. Van. (2015). GPS for Land Surveyors (J. Van Sickle (ed.); 4th Editio). CRC Press, Taylor & Francis Group.
Sidle, R. C., & Ochiai, H. (2006). LANDSLIDES Processes , Prediction , and Land Use American Geophysical Union. American Geophysical Union.
Sy, V. De, Schoorl, J. M., Keesstra, S. D., Jones, K. E., & Claessens, L. (2013). Landslide model performance in a high resolution small-scale landscape. Geomorphology, 190, 73–81. https://doi.org/10.1016/j.geomorph.2013.02.012
Tarboton, D. G. (1997). A new method for determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.
Tarolli, P. (2014). Geomorphology High-resolution topography for understanding Earth surface processes : Opportunities and challenges. Geomorphology, 216, 295–312. https://doi.org/10.1016/j.geomorph.2014.03.008
Tarolli, P., Calligaro, S., Cazzori, F., Fontana, G. D. G. D., Cazorzi, F., & Fontana, G. D. G. D. (2013). Recognition of Surface flow process influenced by roads and trails in mountains areas using high-resolution topography. European Journal of Remote Sensing, 46(1), 176–197. https://doi.org/10.5721/EujRS20134610
Teja, T. S., & Dikshit, A. (2019). Determination of Rainfall Thresholds for Landslide Prediction Using an Algorithm-Based Approach : Case Study in the Darjeeling Himalayas , India. Geosciences, 9(302).
Viet, T. T., Lee, G., Thu, T. M., & An, H. U. (2016). Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS. Natural Hazards Review, 18(2), 1–12. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000233
Wang, C., Esaki, T., Xie, M., & Qiu, C. (2006). Landslide and debris-flow hazard analysis and prediction using GIS in Minamata-Hougawachi area, Japan. Environmental Geology, 51(1), 91–102. https://doi.org/10.1007/s00254-006-0307-0
Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS, 4th ed. 696 pp.
Zhang, W., & Montgomery, D. R. (1994). Digital Elevation Model Grid Size, Landscape Representation, and Hydrologic Simulation. Water Resources Research, 30(4), 1019–1028. |