博碩士論文 106353016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.82.2.112
姓名 徐永松(Yung-Sung Syu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 蚶線型滑轉板轉子引擎壓縮部與動力部組合實作測試
(Test of the Combination of Compression Part and Power Part of Limacon Slide-Rotating Plate Rotary Engine)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文嚐試開發設計一個蚶線型滑轉板汽油轉子引擎,其相較於傳統往復式汽油引擎,具有體積小和重量輕(體積及重量約傳統往復式引擎的1/5),以及每轉720度會有四次(比往復式引擎多三次)輸出動力之優點,適合軍用無人機之引擎或電動車之增程器的應用。在實驗室已有的蚶線型滑轉板轉子引擎壓縮部實作設計基礎上(陳寅立,2019),本研究進一步製作動力部,並組合壓縮部及動力部,以進行蚶線型滑轉板轉子引擎動態測試。先用交流馬達調整不同轉速來量測排氣量、壓力變化及扭力損失,並分析壓力與扭力隨著角度變化。引燃測試則用啟動馬達驅動轉子,透過Arduino主機板連結對射式光電感應模組,讀取光柵盤的轉速來調整化油器。選擇化學計量之燃料和空氣(當量比為1),而燃料選用95無鉛汽油,讓混合氣被壓縮進入動力部後,用火星塞嚐試作引燃測試,目前仍未成功,尚有諸多問題待克服。其一為滑轉板摩擦力問題,因滑轉板旋轉時沒有限位機制,再加上轉速上升會使向心力增加,使得滑轉板會過度摩擦腔體,進而導致滑轉板與腔體間之摩擦力上升,使得需要更大扭力讓引擎能夠啟動運轉,例如轉速設定值在150 rpm時,扭力僅需5 N·m,引擎即可順利啟動運轉,但轉速設定值在1050 rpm時,扭力則需要20 N·m,其引擎才可順利啟動運轉。另一為氣密問題,各腔體內部氣密問題已大致解決,但壓縮部和動力部之間仍有氣密問題尚待解決,此氣密不良問題導致壓縮效果不佳,動力部引燃處所量測最大壓縮壓力為1.843 bar,僅為設計值5.9 bar的31.2%。而轉速設定值在450 rpm~900 rpm時,動力部的實際排氣量都超過動力部的理論排氣量,代表壓縮部有氣體洩漏至動力部,這是使得引燃測試無法順利進行的主要原因。雖然,目前無法順利成功引燃運轉蚶線型滑轉板汽油轉子引擎,但經由前述實作動態測試,已找出須克服之問題,有助實驗室未來持續開發此一創新型轉子引擎之工作。
摘要(英) This thesis aims to develop and design a limacon slide-rotating plate gasoline rotary engine, which is smaller and lighter than the traditional reciprocating gasoline engine (size and weight are about one-fifth of the traditional reciprocating engine). The additional advantage of this engine is that it has four times power output per 720° (three times more than the reciprocating engine). Such a rotary engine is suitable to be used in military UAV engines or as a range-extender for electric vehicles. Based on our previous design of a limacon slide rotating plate rotary engine compression part (Yin-Li Chen, 2019), this research further manufactures the power part. Combining of the compression part with the power part, the dynamics testing of the limacon slide-rotating plate rotary engine is performed. We use an AC motor to adjust different speeds to measure engine displacement, pressure change, torque loss. Furthermore, we analyze the pressure and torque changes from different angles. The photoelectric sensor module is connected with the Arduino motherboard to read the rotation speed of a grating disk. And then we adjust the carburetor. A stoichiometric fuel to air equivalence ratio(ψ=1), where the fuel is the commercial unleaded gasoline 95. We let the fuel/air mixture compress into the power part, then we use a car spark plug to ignite the mixture for the ignition test. Unfortunately, the ignition test was unsuccessful. There are still several problems to be overcome before a successful engine operation could be achieved. The first problem is the friction problem of the slide-rotating plate. We need to develop a counter-balanced mechanism when the slide-rotating plate rotates, when the rotational speed increases, the centripetal force increases. Thus, the slide-rotating plate is excessively rubbing the rotor housing. It leads to the friction problem between the slide-rotating plate and the rotor housing, resulting in more torque needed in order to run the engine. For example, when the speed setting value is 150 rpm, it only requires 5 N•m of torque to run the engine, but the torque required to run 1050 rpm increased to 20 N•m. The other problem is the gas leakage problem. The gas leakage problem inside the rotor housing has been solved, but there is still an unresolved gas leakage problem between the compression part and the power part. Poor gas tightness problem can result in poor compression. The maximum compression pressure measured is 1.843 bar, which is only 31.2% of the design value of 5.9 bar. When the speed setting value is 450 to 900 rpm, the actual displacement of the power part exceeds the theoretical displacement of the power part. This means that there is gas leakage from the compression part to the power part. Because of the aforesaid two problems, the ignition test cannot be smoothly carried out. Although we cannot operate successfully the limacon slide-rotating plate gasoline rotary engine, we identify the problems to be solved. This will help us to develop an innovative rotary engine in the future.
關鍵字(中) ★ 蚶線
★ 滑轉板
★ 轉子引擎
★ 引擎特性
關鍵字(英) ★ limacon
★ slide-rotating plate
★ rotary engine
★ engine performance
論文目次 摘要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 XIII
符號說明 XIV
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1 Wankel轉子引擎 5
2.1.1 Wankel轉子引擎之介紹 5
2.1.2 Wankel轉子引擎之優缺點 6
2.2轉子引擎研究與改良 7
2.2.1 轉子引擎的分類 7
2.2.1.1 單轉子引擎 9
2.2.1.2 擺動式轉子引擎 12
2.2.1.3 行星式轉子引擎 13
2.3 蚶線型轉子引擎原理 16
2.3.1蚶線數學模型 16
2.3.2 基礎結構 17
第三章 實驗設備與研究方法 19
3.1 蚶線型滑轉板轉子引擎 19
3.1.1基礎構造 19
3.1.2 運轉原理 28
3.1.3 行程角度 29
3.2 實驗方法 32
3.2.1實驗架構 32
3.2.2 引擎排氣量 34
3.2.3 腔體壓力 35
3.2.4 扭力變化 36
3.2.5 燃氣當量比 36
第四章 結果與討論 38
4.1 扭力損失之量測與分析 38
4.2 壓縮壓力之量測與分析 43
4.3排氣流量之量測與分析 45
第五章 結論與未來工作 47
5.1 結論 47
5.2 未來工作 48
參考文獻 50
參考文獻 [1] 許右龍,轉子引擎動態氣封洩漏分析,國立中興大學機械工程學研究所碩士論文 (2015).

[2] http://www.ncsist.org.tw/csistdup/products/product.aspx?product_id=278&catalog=41

[3] 陳寅立,蚶線形滑轉板轉子引擎設計與實作,國立中央大學機械工程學研究所碩士論文 (2019).

[4] https://en.wikipedia.org/wiki/Wankel_engine.

[5] 馮俊宇,UAV Wankel燃油噴射式引擎之設計與製作,國立中興大學機械工程學研究所碩士論文 (2008).

[6] K. Yamamoto, Rotary Engine, Sankaido Publishing Co., Ltd., Tokyo, 1981.

[7] T. Sleiman, A.S. Laba, J.J. Laba, Rotary machine with roller controlled vanes, US Patent 8,336,518 (2012).

[8] N.T. Liu, Rotary internal combustion engine, US Patent 6,082,324 (2000).

[9] 周代翔,新型爪式轉子引擎之設計與分析,國立臺灣大學機械工程學研究所碩士論文 (2008).

[10] D.B. Wittry, Rotary engine with variable compression ratio, US Patent 5,433,179 (1995).

[11] R. Morgado, Internal Combustion Engine and Method, US Patent 6,739,307 (2007).

[12] https://medium.com/@timventura/the-high-output-massive-yet-tiny-swing-piston-engine

[13] G.R. Pennock, J.E. Beard, Force analysis of the apex seals in the Wankel rotary compressor including the influence of fluctuations in the crankshaft speed, Mechanism and Machine Theory 32 (1997) 349-361.

[14] J. Knoll, C. Vilmann, H. Schock, R. Stumpf, A dynamic analysis of rotary combustion engine seals, SAE Technical Paper 840035 (1984).

[15] S. Zhang, J. Liu, Y. Zhou, Effect of DLC coating on the friction power loss between apex seal and housing in small Wankel rotary engine, Tribology International 134 (2019) 365-371.

[16] T. Resch, C. Schweiger, G. Offner, Y. Miyauchi, Numerical Investigation in Rotor Motion and Elasto-Hydrodynamic Rotor Bearing Behavior of a Rotary Engine Using Flexible Multi-Body Dynamics, SAE Technical Paper 2007-01-1459 (2007).

[17] W. Chen, J. Pan, Y. Liu, B. Fan, H. Liu, P. Otchere, Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine, Applied Energy 233 (2019) 453-467.

[18] B. Fan, J. Pan, W. Yang, Y. Zhu, W. Chen, Effects of hydrogen blending mode on combustion process of a rotary engine fueled with natural gas/hydrogen blends, International Journal of Hydrogen Energy 41 (2016) 4039-4053.

[19] F. Amrouche, P. Erickson, S. Varnhagen, J. Park, An experimental analysis of hydrogen enrichment on combustion characteristics of a gasoline Wankel engine at full load and lean burn regime, International Journal of Hydrogen Energy 43 (2018) 19250-19259.

[20] F. Amrouche, P. Erickson, S. Varnhagen, J.W. Park, An experimental study of a hydrogen-enriched ethanol fueled Wankel rotary engine at ultra lean and full load conditions, Energy Conversion and Management 123 (2016) 174-184.

[21] T. Su, C. Ji, S. Wang, X. Cong, L. Shi, J. Yang, Investigation on combustion and emissions characteristics of a hydrogen-blended n-butanol rotary engine, International Journal of Hydrogen Energy 42 (2017) 26142-26151.

[22] 趙文敏,蚶線,科學月刊21 (1990) 557-560.
指導教授 施聖洋 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明