博碩士論文 107323601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.164.47
姓名 普德古(Unggul Teguh Prasetyo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以複數特徵值分析浮動卡鉗動態之不穩定與噪音
(Dynamic Instability Analysis of Floating Caliper Brake Based on Complex Eigenvalue Extraction: A Parametric Study of Low and High-Frequency Squeal)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 在車輛煞車至停止前的一瞬間往往是卡鉗的高頻噪音
(1 16kHz)的來源,雖然噪音
對於煞車效能僅有些微的影響,但卻與產品的品質保證與消費者的滿意度有莫大的關聯,
雖然此現象複雜且無法完全 了解 ,多項研究仍推斷此現象發生的原因為系統的不穩定
性。
本次研究使用有限元素法萃取複數的特徵值進而分析系統,當特徵值實部為正時,
代表系統存在著負的阻尼,此時系統會變的不穩定 ,進而產生尖銳煞車噪音 。本研究使
用 MSC Nastran 2018 進行複數特徵值的分析。研究發現 對於所分析的特定卡鉗 在低
頻範圍中 2.9kHz會出現最大不穩定性 與 噪音 ,而高頻範圍則是 9.9kHz 會出現最大不穩
定性 與噪音 。本研究也 討論 變更設計的參數研究其對於系統的影響,其結果顯示摩擦係
數、來令片背板的勁 度、接觸面積、來令片形狀、阻尼隔音層對於系統的不穩定性 甚為
顯著 。而噪音可經由減少摩擦係數達 到抑制 當來令片背板越硬,則噪音會越 大 來令
片 楊氏模數在低頻範圍的噪音中臨界值為 180GPa 而高頻範圍其不穩定區間為 140GPa至 280GPa 不僅如此,減少 來令片 與煞車碟盤 接觸面積 或者 改變來令片的形狀 也可以
減少噪音 最後, 煞車 噪音 也可以藉著 增加阻尼隔音層 而減少 。
摘要(英) Brake squeal results from high frequency vibration (1 16 kHz) during the vehicle braking that occurs just a moment before stopping. Brake squeal has little effect on braking performance. However, this audible noise relates to customer dissatisfaction and high warranty cost. Although this phenomenon is complicated and remains unclear, several previous studies presumed that it is due to system instability.
In this study, the finite element method was used to analyze the system by extracting and examining the complex eigenvalues. The system is unstable if the real part of the eigenvalue is positive, which indicates the existence of negative damping. Complex eigenvalue calculation was done using MSC Nastran 2018. In this the present work, the dominant instability occurs at 2.9 kHz for the low frequency squeal and 9.9 kHz for the high frequency squeal. The effects of varying several parameters were studied. The results of friction coefficient, rotational speed and hydraulic pressure, back pad stiffness, contact area, lining pad shape, and adding a damping layer are significant to the instability.
關鍵字(中) ★ 卡鉗噪音
★ 卡鉗的不穩定性
★ 複數特徵值分析
★ 有限元素法
關鍵字(英) ★ brake squeal
★ instability
★ complex eigenvalue analysis
★ finite element method
論文目次 摘要 . i
Abstract ii
Preface iii
Table of Contents iv
List of Figures vii
List of Tables xi
Chapter 1. Introduction and Literature Review 1
1.1. Background 1
1.2. Classification of the vehicle system 2
1.3. Classification of brake system 4
1.4. Brake squeal mechanism 5
1.4.1. Stick-slip mechanism 5
1.4.2. Sparg-slip mechanism 6
1.4.3. Mode coupling mechanism 7
1.5. The investigation into brake squeal 8
1.5.1. Experimental approach 8
1.5.2. Theoretical approach 9
1.5.3. Finite element approach 11
Chapter 2. Formulation and Computational Methods 15
2.1. Complex eigenvalue extraction 15
2.2. Finite element modeling 16
2.3. Complex eigenvalue analysis using MSC Nastran 19
Chapter 3. Results and Discussion 22
3.1. Verification of model and analysis procedure 22
3.1.1. Natural frequency extraction 22
3.1.2. Validation of analysis procedure 24
3.2. Complex eigenvalue analysis results 25
3.3. Modal assurance criteria (MAC) analysis 27
3.4. Parametric studies 29
3.4.1. Influence of rotational speed 29
3.4.2. Influence of hydraulic pressure 29
3.4.3. Influence of friction coefficient 32
3.4.4. Influence of back pad stiffness 35
3.4.5. Influence of reduced contact area 38
3.4.6. Influence of lining pad shape 44
3.4.7. Influence of damping layer 46
3.5. Parametric optimization and prediction opportunity 51
3.5.1. Model fitting 52
3.5.2. Optimization opportunity 56
Chapter 4. Conclusions and Future Works 60
4.1. Conclusions 60
4.2. Suggestions for future works 60
Bibliography 62
APPENDIXES 66
Appendix A: Procedure of brake squeal analysis 67
1. Import the finite element (FE) model to MSC Patran and define materials. 67
2. Set up coordinate 1 and 2 68
3. Set up multi-point constrain (MPC)  RB2 68
5. Apply the loading 70
6. Determine the analyzed group 71
7. Choose the solution pack and set the output 72
8. Create subcase (1st load step: non-linear static analysis) 73
9. Create subcase (2nd load step: complex eigenvalue analysis) 74
10. Run both subcases in one execution 75
11. Edit *.bdf file manually and run with MSC Nastran 76
12. Processing the data (complex eigenvalue) 77
Appendix B: Nastran input file 78
Appendix C: Neural network (NN) curve fitting code by Mathlab 82
Appendix D: Genetic algorithm (GA) codes by Python 84
參考文獻 [1] N. M.Kinkaid, O. M.O’Reilly, and P.Papadopoulos, “Automotive disc brake squeal,” J. Sound Vib., vol. 267, no. 1, pp. 105–166, 2003, doi: 10.1016/S0022-460X(02)01573-0.
[2] P.Liu et al., “Analysis of disc brake squeal using the complex eigenvalue method,” Appl. Acoust., vol. 68, no. 6, pp. 603–615, 2007, doi: 10.1016/j.apacoust.2006.03.012.
[3] H. J.Soh and J. H.Yoo, “Optimal shape design of a brake calliper for squeal noise reduction considering system instability,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 224, no. 7, pp. 909–925, 2010, doi: 10.1243/09544070JAUTO1385.
[4] M.Trichês Júnior, S. N. Y.Gerges, and R.Jordan, “Analysis of brake squeal noise using the finite element method: A parametric study,” Appl. Acoust., vol. 69, no. 2, pp. 147–162, 2008, doi: 10.1016/j.apacoust.2007.10.003.
[5] A.Akay, “Acoustics of friction,” J. Acoust. Soc. Am., vol. 111, no. 4, pp. 1525–1548, 2002, doi: 10.1121/1.1456514.
[6] H.Abendroth and B.Wernitz, “The integrated test concept: Dyno - Vehicle, performance - Noise,” SAE Tech. Pap., no. 724, 2000, doi: 10.4271/2000-01-2774.
[7] F.Massi, L.Baillet, O.Giannini, and A.Sestieri, “Brake squeal: Linear and nonlinear numerical approaches,” Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2374–2393, 2007, doi: 10.1016/j.ymssp.2006.12.008.
[8] S.Oberst and J. C. S.Lai, “Pad-mode-induced instantaneous mode instability for simple models of brake systems,” Mech. Syst. Signal Process., vol. 62, pp. 490–505, 2015, doi: 10.1016/j.ymssp.2015.03.023.
[9] N. M.Ghazaly and G.Bashery, “Study on Automotive Disc Brake Squeal Using Finite Element Analysis and Design of Experiments Faculty of Mechanical Engineering,” 2010.
[10] R.Limpert, Brake Design and Safety, vol. Volume 154, no. Issue 2. 1999.
[11] Y.Dai and T. C.Lim, “Suppression of brake squeal noise applying finite element brake and pad model enhanced by spectral-based assurance criteria,” Appl. Acoust., vol. 69, no. 3, pp. 196–214, 2008, doi: 10.1016/j.apacoust.2006.09.010.
[12] S. K.Phee, P. H. S.Tsang, and Y. S.Wang, “Friction-induced noise and vibration of disc brakes,” Wear Mater. Int. Conf. Wear Mater., vol. 133, pp. 653–656, 1989.
[13] S. W.Kung, V. C.Saligrama, and M. A.Riehle, “Modal participation analysis for identifying brake squeal mechanism,” SAE Tech. Pap., no. 724, 2000, doi: 10.4271/2000-01-2764.
[14] P.Duffour, “Noise generation in vehicle brakes,” Thesis, no. December, 2002.
[15] R. T.Spurr, “A Theory of Brake Squeal,” Proc. Inst. Mech. Eng. Automob. Div., vol. 15, no. 1, pp. 33–52, 1961, doi: 10.1243/pime_auto_1961_000_009_02.
[16] G.Rodrigues, “Disc brake squeal mode coupling instability type,” University of Porto, 2017.
[17] M.Triches, S. N. Y.Gerges, and R.Jordan, “Reduction of squeal noise from disc brake systems using constrained layer damping,” J. Brazilian Soc. Mech. Sci. Eng., vol. 26, no. 3, pp. 340–348, 2004, doi: 10.1590/s1678-58782004000300011.
[18] A.Tuchinda, N. P.Hoffmann, D. J.Ewins, and W.Keiper, “Mode lock-in characteristics and instability study of the pin-on-disc system,” Proc. Int. Modal Anal. Conf. - IMAC, vol. 1, no. January 2001, pp. 71–77, 2001.
[19] A.Tuchida, “Development of validated models for brake squeal predictions,” Imperial College London, 2003.
[20] F.Bergman, M.Eriksson, and S.Jacobson, “The effect of reduced contact area on the occurrence of disc brake squeals for an automotive brake pad,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 214, no. 5, pp. 561–568, 2000, doi: 10.1243/0954407001527844.
[21] A. S. and I. A.-G.M. Watany, S. Abouel-Seoud, “Brake Squeal Generation,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 108, pp. 2730–2739, 1999.
[22] A. M.El-Butch and I. M.Ibrahim, “Modeling and analysis of geometrically induced vibration in disc brakes considering contact parameters,” SAE Tech. Pap., no. 724, 1999, doi: 10.4271/1999-01-0143.
[23] H. L. and J. E. O.YG Joe, BG Cha, HJ Sim, “Analysis Of Disc Brake Instability Due To Friction-Inducedvibration Using A Distributed Parameter Model,” Int. J. Automot. Technol., vol. 9, no. 2, pp. 161–171, 2008, doi: 10.1007/s12239-008-0021-x.
[24] J.Kang, C. M.Krousgrill, and F.Sadeghi, “Oscillation pattern of stick-slip vibrations,” Int. J. Non. Linear. Mech., vol. 44, no. 7, pp. 820–828, 2009, doi: 10.1016/j.ijnonlinmec.2009.05.002.
[25] L. I.Nagy, J.Cheng, and F. M.Co, “SA E TECHNICAL PA PER SERIES A New Method Development to Predict Brake Squeal Occurrence,” no. 412, 1994.
[26] F.Chen, J.Chern, and J.Swayze, “Modal coupling and its effect on brake squeal,” SAE Tech. Pap., no. 724, 2002, doi: 10.4271/2002-01-0922.
[27] G. D.Liles, “Analysis of disc brake squeal using finite element methods,” SAE Tech. Pap., 1989, doi: 10.4271/891150.
[28] F.Chen, “Automotive disk brake squeal: An overview,” Int. J. Veh. Des., vol. 51, no. 1–2, pp. 39–72, 2009, doi: 10.1504/ijvd.2009.027115.
[29] A.Bajer, V.Belsky, and L. J.Zeng, “Combining a nonlinear static analysis and complex eigenvalue extraction in brake squeal simulation,” SAE Tech. Pap., no. 724, 2003, doi: 10.4271/2003-01-3349.
[30] MSC Software, “MSC Nastran 2014 Release Guide,” 2014.
[31] N.Ishihara, M.Nishiwaki, and H.Shimizu, “Experimental analysis of low-frequency brake squeal noise,” SAE Tech. Pap., no. 412, 1996, doi: 10.4271/962128.
[32] T.Matsushima, H.Masumo, S.Ito, andM.Nishiwaki, “FE analysis of low-frequency disc brake squeal (In case of floating type caliper),” SAE Tech. Pap., no. 724, 1998, doi: 10.4271/982251.
[33] S.Kung, K. B.Dunlap, and R. S.Ballinger, “Low Frequency Brake Squeal,” no. 724, 2011.
[34] S. D.Joo, J. H.Han, K. W.Park, andY. J.Kim, “Reducing brake squeal through fem approach and parts design modifications,” SAE Tech. Pap., no. 724, 2006, doi: 10.4271/2006-01-3206.
[35] J.Hou, X. X.Guo, and G. F.Tan, “Complex mode analysis on disc brake squeal and design improvement,” SAE Tech. Pap., vol. 4970, 2009, doi: 10.4271/2009-01-2101.
[36] C.Kim, Y.Kwon, andD.Kim, “Analysis of Low-Frequency Squeal in Automotive Disc Brake by Optimizing Groove and Caliper Shapes,” Int. J. Precis. Eng. Manuf., vol. 19, no. 4, pp. 505–512, 2018, doi: 10.1007/s12541-018-0061-8.
[37] D. C.Barton and J. D.Fieldhouse, Automotive Chassis Engineering. UK: Springer International Publishing, 2018.
[38] S. K.Nouby M, “Parametric Studies of Disc Brake Squeal Using Finite Element Approach,” J. Mek., no. 29, pp. 52–66, 2009.
[39] G. X.Chen, J. Z.Lv, Q.Zhu, Y.He, and X. B.Xiao, “Effect of the braking pressure variation on disc brake squeal of a railway vehicle: Test measurement and finite element analysis,” Wear, vol. 426–427, no. September 2018, pp. 1788–1796, 2019, doi: 10.1016/j.wear.2018.12.051.
[40] G.Pan, Y.Li, and L.Chen, “Impact Analysis and Optimization of Material Parameters of Insulator on Brake Squeal,” IEEE Access, vol. 7, pp. 15861–15867, 2019, doi: 10.1109/ACCESS.2019.2894781.
[41] J. G.McDaniel et al., “Simulating the effect of insulators in reducing disc brake squeele,” SAE Tech. Pap., no. 724, 2005, doi: 10.4271/2005-01-3944.
[42] J.Flint, J. G.McDaniel, X.Li, A.Elvenkemper, A.Wang, and S. E.Chen, “Measurement and simulation of the complex shear modulus of insulators,” SAE Tech. Pap., no. 724, 2004, doi: 10.4271/2004-01-2799.
[43] N. M.Ghazaly and W. F.Faris, “Optimal design of a brake pad for squeal noise reduction using response surface methodology,” Int. J. Veh. Noise Vib., vol. 8, no. 2, pp. 125–135, 2012, doi: 10.1504/IJVNV.2012.046463.
[44] V.Ćirović, D.Smiljanić, D.Aleksendrić, and V.Simovic, “Neuro-genetic optimization of disc brake performance at elevated temperatures,” FME Trans., vol. 42, no. 2, pp. 142–149, 2014, doi: 10.5937/fmet1402142C.
[45] H.Lü and D.Yu, “Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization,” J. Sound Vib., vol. 333, no. 26, pp. 7313–7325, 2014, doi: 10.1016/j.jsv.2014.08.027.
[46] G.Spelsberg-Korspeter, “Eigenvalue optimization against brake squeal: Symmetry, mathematical background and experiments,” J. Sound Vib., vol. 331, no. 19, pp. 4259–4268, 2012, doi: 10.1016/j.jsv.2012.04.026.
指導教授 黃以玫 黃以玫(Yi Mei Huang Yi Mei Huang) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明