參考文獻 |
[1] N. M.Kinkaid, O. M.O’Reilly, and P.Papadopoulos, “Automotive disc brake squeal,” J. Sound Vib., vol. 267, no. 1, pp. 105–166, 2003, doi: 10.1016/S0022-460X(02)01573-0.
[2] P.Liu et al., “Analysis of disc brake squeal using the complex eigenvalue method,” Appl. Acoust., vol. 68, no. 6, pp. 603–615, 2007, doi: 10.1016/j.apacoust.2006.03.012.
[3] H. J.Soh and J. H.Yoo, “Optimal shape design of a brake calliper for squeal noise reduction considering system instability,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 224, no. 7, pp. 909–925, 2010, doi: 10.1243/09544070JAUTO1385.
[4] M.Trichês Júnior, S. N. Y.Gerges, and R.Jordan, “Analysis of brake squeal noise using the finite element method: A parametric study,” Appl. Acoust., vol. 69, no. 2, pp. 147–162, 2008, doi: 10.1016/j.apacoust.2007.10.003.
[5] A.Akay, “Acoustics of friction,” J. Acoust. Soc. Am., vol. 111, no. 4, pp. 1525–1548, 2002, doi: 10.1121/1.1456514.
[6] H.Abendroth and B.Wernitz, “The integrated test concept: Dyno - Vehicle, performance - Noise,” SAE Tech. Pap., no. 724, 2000, doi: 10.4271/2000-01-2774.
[7] F.Massi, L.Baillet, O.Giannini, and A.Sestieri, “Brake squeal: Linear and nonlinear numerical approaches,” Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2374–2393, 2007, doi: 10.1016/j.ymssp.2006.12.008.
[8] S.Oberst and J. C. S.Lai, “Pad-mode-induced instantaneous mode instability for simple models of brake systems,” Mech. Syst. Signal Process., vol. 62, pp. 490–505, 2015, doi: 10.1016/j.ymssp.2015.03.023.
[9] N. M.Ghazaly and G.Bashery, “Study on Automotive Disc Brake Squeal Using Finite Element Analysis and Design of Experiments Faculty of Mechanical Engineering,” 2010.
[10] R.Limpert, Brake Design and Safety, vol. Volume 154, no. Issue 2. 1999.
[11] Y.Dai and T. C.Lim, “Suppression of brake squeal noise applying finite element brake and pad model enhanced by spectral-based assurance criteria,” Appl. Acoust., vol. 69, no. 3, pp. 196–214, 2008, doi: 10.1016/j.apacoust.2006.09.010.
[12] S. K.Phee, P. H. S.Tsang, and Y. S.Wang, “Friction-induced noise and vibration of disc brakes,” Wear Mater. Int. Conf. Wear Mater., vol. 133, pp. 653–656, 1989.
[13] S. W.Kung, V. C.Saligrama, and M. A.Riehle, “Modal participation analysis for identifying brake squeal mechanism,” SAE Tech. Pap., no. 724, 2000, doi: 10.4271/2000-01-2764.
[14] P.Duffour, “Noise generation in vehicle brakes,” Thesis, no. December, 2002.
[15] R. T.Spurr, “A Theory of Brake Squeal,” Proc. Inst. Mech. Eng. Automob. Div., vol. 15, no. 1, pp. 33–52, 1961, doi: 10.1243/pime_auto_1961_000_009_02.
[16] G.Rodrigues, “Disc brake squeal mode coupling instability type,” University of Porto, 2017.
[17] M.Triches, S. N. Y.Gerges, and R.Jordan, “Reduction of squeal noise from disc brake systems using constrained layer damping,” J. Brazilian Soc. Mech. Sci. Eng., vol. 26, no. 3, pp. 340–348, 2004, doi: 10.1590/s1678-58782004000300011.
[18] A.Tuchinda, N. P.Hoffmann, D. J.Ewins, and W.Keiper, “Mode lock-in characteristics and instability study of the pin-on-disc system,” Proc. Int. Modal Anal. Conf. - IMAC, vol. 1, no. January 2001, pp. 71–77, 2001.
[19] A.Tuchida, “Development of validated models for brake squeal predictions,” Imperial College London, 2003.
[20] F.Bergman, M.Eriksson, and S.Jacobson, “The effect of reduced contact area on the occurrence of disc brake squeals for an automotive brake pad,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 214, no. 5, pp. 561–568, 2000, doi: 10.1243/0954407001527844.
[21] A. S. and I. A.-G.M. Watany, S. Abouel-Seoud, “Brake Squeal Generation,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 108, pp. 2730–2739, 1999.
[22] A. M.El-Butch and I. M.Ibrahim, “Modeling and analysis of geometrically induced vibration in disc brakes considering contact parameters,” SAE Tech. Pap., no. 724, 1999, doi: 10.4271/1999-01-0143.
[23] H. L. and J. E. O.YG Joe, BG Cha, HJ Sim, “Analysis Of Disc Brake Instability Due To Friction-Inducedvibration Using A Distributed Parameter Model,” Int. J. Automot. Technol., vol. 9, no. 2, pp. 161–171, 2008, doi: 10.1007/s12239-008-0021-x.
[24] J.Kang, C. M.Krousgrill, and F.Sadeghi, “Oscillation pattern of stick-slip vibrations,” Int. J. Non. Linear. Mech., vol. 44, no. 7, pp. 820–828, 2009, doi: 10.1016/j.ijnonlinmec.2009.05.002.
[25] L. I.Nagy, J.Cheng, and F. M.Co, “SA E TECHNICAL PA PER SERIES A New Method Development to Predict Brake Squeal Occurrence,” no. 412, 1994.
[26] F.Chen, J.Chern, and J.Swayze, “Modal coupling and its effect on brake squeal,” SAE Tech. Pap., no. 724, 2002, doi: 10.4271/2002-01-0922.
[27] G. D.Liles, “Analysis of disc brake squeal using finite element methods,” SAE Tech. Pap., 1989, doi: 10.4271/891150.
[28] F.Chen, “Automotive disk brake squeal: An overview,” Int. J. Veh. Des., vol. 51, no. 1–2, pp. 39–72, 2009, doi: 10.1504/ijvd.2009.027115.
[29] A.Bajer, V.Belsky, and L. J.Zeng, “Combining a nonlinear static analysis and complex eigenvalue extraction in brake squeal simulation,” SAE Tech. Pap., no. 724, 2003, doi: 10.4271/2003-01-3349.
[30] MSC Software, “MSC Nastran 2014 Release Guide,” 2014.
[31] N.Ishihara, M.Nishiwaki, and H.Shimizu, “Experimental analysis of low-frequency brake squeal noise,” SAE Tech. Pap., no. 412, 1996, doi: 10.4271/962128.
[32] T.Matsushima, H.Masumo, S.Ito, andM.Nishiwaki, “FE analysis of low-frequency disc brake squeal (In case of floating type caliper),” SAE Tech. Pap., no. 724, 1998, doi: 10.4271/982251.
[33] S.Kung, K. B.Dunlap, and R. S.Ballinger, “Low Frequency Brake Squeal,” no. 724, 2011.
[34] S. D.Joo, J. H.Han, K. W.Park, andY. J.Kim, “Reducing brake squeal through fem approach and parts design modifications,” SAE Tech. Pap., no. 724, 2006, doi: 10.4271/2006-01-3206.
[35] J.Hou, X. X.Guo, and G. F.Tan, “Complex mode analysis on disc brake squeal and design improvement,” SAE Tech. Pap., vol. 4970, 2009, doi: 10.4271/2009-01-2101.
[36] C.Kim, Y.Kwon, andD.Kim, “Analysis of Low-Frequency Squeal in Automotive Disc Brake by Optimizing Groove and Caliper Shapes,” Int. J. Precis. Eng. Manuf., vol. 19, no. 4, pp. 505–512, 2018, doi: 10.1007/s12541-018-0061-8.
[37] D. C.Barton and J. D.Fieldhouse, Automotive Chassis Engineering. UK: Springer International Publishing, 2018.
[38] S. K.Nouby M, “Parametric Studies of Disc Brake Squeal Using Finite Element Approach,” J. Mek., no. 29, pp. 52–66, 2009.
[39] G. X.Chen, J. Z.Lv, Q.Zhu, Y.He, and X. B.Xiao, “Effect of the braking pressure variation on disc brake squeal of a railway vehicle: Test measurement and finite element analysis,” Wear, vol. 426–427, no. September 2018, pp. 1788–1796, 2019, doi: 10.1016/j.wear.2018.12.051.
[40] G.Pan, Y.Li, and L.Chen, “Impact Analysis and Optimization of Material Parameters of Insulator on Brake Squeal,” IEEE Access, vol. 7, pp. 15861–15867, 2019, doi: 10.1109/ACCESS.2019.2894781.
[41] J. G.McDaniel et al., “Simulating the effect of insulators in reducing disc brake squeele,” SAE Tech. Pap., no. 724, 2005, doi: 10.4271/2005-01-3944.
[42] J.Flint, J. G.McDaniel, X.Li, A.Elvenkemper, A.Wang, and S. E.Chen, “Measurement and simulation of the complex shear modulus of insulators,” SAE Tech. Pap., no. 724, 2004, doi: 10.4271/2004-01-2799.
[43] N. M.Ghazaly and W. F.Faris, “Optimal design of a brake pad for squeal noise reduction using response surface methodology,” Int. J. Veh. Noise Vib., vol. 8, no. 2, pp. 125–135, 2012, doi: 10.1504/IJVNV.2012.046463.
[44] V.Ćirović, D.Smiljanić, D.Aleksendrić, and V.Simovic, “Neuro-genetic optimization of disc brake performance at elevated temperatures,” FME Trans., vol. 42, no. 2, pp. 142–149, 2014, doi: 10.5937/fmet1402142C.
[45] H.Lü and D.Yu, “Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization,” J. Sound Vib., vol. 333, no. 26, pp. 7313–7325, 2014, doi: 10.1016/j.jsv.2014.08.027.
[46] G.Spelsberg-Korspeter, “Eigenvalue optimization against brake squeal: Symmetry, mathematical background and experiments,” J. Sound Vib., vol. 331, no. 19, pp. 4259–4268, 2012, doi: 10.1016/j.jsv.2012.04.026. |