參考文獻 |
[1] Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. US4575330A.
[2] Morris, V. B., Nimbalkar, S., Younesi, M., McClellan, P., & Akkus, O. (2017). Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Annals of biomedical engineering, 45(1), 286-296.
[3] Göppert-Mayer, M. (2009). Elementary processes with two quantum transitions. Annalen der Physik, 18(7‐8), 466-479.
[4] Kaiser, W., & Garrett, C. G. B. (1961). Two-photon excitation in Ca F_2: Eu^(2+). Physical review letters, 7(6), 229.
[5] Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73-76.
[6] Kjærgaard, N., Hornekær, L., Thommesen, A. M., Videsen, Z., & Drewsen, M. (2000). Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Applied Physics B, 71(2), 207-210
[7] Gao, D., Agayan, R. R., Xu, H., Philbert, M. A., & Kopelman, R. (2006). Nanoparticles for two-photon photodynamic therapy in living cells. Nano letters, 6(11), 2383-2386.
[8] Maruo, S., & Kawata, S. (1998). Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. Journal of microelectromechanical systems, 7(4), 411-415.
[9] Maruo, S., Nakamura, O., & Kawata, S. (1997). Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters, 22(2), 132-134.
[10] Bertsch, A., Zissi, S., Jezequel, J. Y., Corbel, S., & Andre, J. C. (1997). Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsystem technologies, 3(2), 42-47.
[11] Hornbeck, L. J. (1997). Digital light processing for high-brightness high-resolution applications. In Projection Displays III , 3013, 27-40.
[12] Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K., & Chen, S. (2016). 3D printing of functional biomaterials for tissue engineering. Current opinion in biotechnology, 40, 103-112.
[13] Zhang, A. P., Qu, X., Soman, P., Hribar, K. C., Lee, J. W., Chen, S., & He, S. (2012). Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced materials, 24(31), 4266-4270.
[14] Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials today, 7(7-8), 32-39.
[15] Kollamaram, G., Croker, D. M., Walker, G. M., Goyanes, A., Basit, A. W., & Gaisford, S. (2018). Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International journal of pharmaceutics, 545(1-2), 144-152.
[16] Negro, A., Cherbuin, T., & Lutolf, M. P. (2018). 3D inkjet printing of complex, cell-laden hydrogel structures. Scientific reports, 8(1), 1-9.
[17] Barry III, R. A., Shepherd, R. F., Hanson, J. N., Nuzzo, R. G., Wiltzius, P., & Lewis, J. A. (2009). Direct‐write assembly of 3D hydrogel scaffolds for guided cell growth. Advanced materials, 21(23), 2407-2410.
[18] Hon, K. K. B., Li, L., & Hutchings, I. M. (2008). Direct writing technology—Advances and developments. CIRP annals, 57(2), 601-620.
[19] Lebel, L. L., Aissa, B., Khakani, M. A. E., & Therriault, D. (2010). Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Advanced Materials, 22(5), 592-596.
[20] Zhuang, P., Ng, W. L., An, J., Chua, C. K., & Tan, L. P. (2019). Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PloS one, 14(6), e0216776.
[21] Liu, J., Li, L., Suo, H., Yan, M., Yin, J., & Fu, J. (2019). 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials & Design, 171, 107708.
[22] O′brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials today, 14(3), 88-95.
[23] Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced drug delivery reviews, 60(2), 243-262.
[24] Lanza, R., Langer, R., Vacanti, J. P., & Atala, A. (Eds.). (2020). Principles of tissue engineering. Academic press.
[25] Murphy, C. M., Haugh, M. G., & O′brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461-466.
[26] Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell adhesion & migration, 4(3), 377-381.
[27] Boyd, R. W. (2019). Nonlinear optics. Academic press.
[28] Belfield, K. D., Yao, S., & Bondar, M. V. (2008). Two-photon absorbing photonic materials: From fundamentals to applications. Advances in polymer science, 213, 97-156.
[29] Colasante, C., Sanford, Z., Garfein, E., & Tepper, O. (2016). Current trends in 3D printing, bioprosthetics, and tissue engineering in plastic and reconstructive surgery. Current Surgery Reports, 4(2), 6.
[30] Selimis, A., Mironov, V., & Farsari, M. (2015). Direct laser writing: Principles and materials for scaffold 3D printing. Microelectronic Engineering, 132, 83-89.
[31] Kim, J. D., & Lee, Y. G. (2016). Improvement of distortion error for fabricating precision microparts using two-photon photopolymerization. Journal of Micromechanics and Microengineering, 26(7), 075012.
[32] Hafez, M., Sidler, T., & Salathe, R. P. (2003). Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner. Optical Engineering, 42(4), 1048-1057.
[33] Lim, T. W., Son, Y., Yang, D. Y., Kong, H. J., Lee, K. S., & Park, S. H. (2008). Highly effective three-dimensional large-scale microfabrication using a continuous scanning method. Applied Physics A, 92(3), 541.
[34] Rekštytė, S., Žukauskas, A., Purlys, V., Gordienko, Y., & Malinauskas, M. (2013). Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces. Applied Surface Science, 270, 382-387.
[35] Knowlton, S., Yenilmez, B., Anand, S., & Tasoglu, S. (2017). Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5, 10-18.
[36] Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M., & D′Lima, D. D. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 18(11-12), 1304-1312.
[37] Gao, G., Schilling, A. F., Yonezawa, T., Wang, J., Dai, G., & Cui, X. (2014). Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology journal, 9(10), 1304-1311.
[38] D O’Connell, C., Di Bella, C., Thompson, F., Augustine, C., Beirne, S., Cornock, R., Richards, C, J., Chung, J., Gambhir, S., Yue, Z., Bourke, J., Zhang, B., Taylor, A., Quigley, A., Kapsa, R., Choong, P., & Wallace, G,G. (2016). Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 8(1), 015019.
[39] Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., Van Blitterswijk, C. A., Schacht, E., Alblas, J., & Dhert, W. J. (2009). Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10(7), 1689-1696.
[40] Trachtenberg, J. E., Placone, J. K., Smith, B. T., Piard, C. M., Santoro, M., Scott, D. W., Fischer, J. P., & Mikos, A. G. (2016). Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design. ACS Biomaterials Science & Engineering, 2(10), 1771-1780.
[41] Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6(2), 024105.
[42] Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M. R., Dentini, M., & Khademhosseini, A. (2016). Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Advanced materials, 28(4), 677-684.
[43] Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
[44] Tangsadthakun, C., Kanokpanont, S., Sanchavanakit, N., Banaprasert, T., & Damrongsakkul, S. (2006). Properties of collagen/chitosan scaffolds for skin tissue engineering. Journal of Metals, Materials and Minerals, 16(1), 37-44.
[45] Mohan, N., & Nair, P. D. (2005). Novel porous, polysaccharide scaffolds for tissue engineering applications. Trends Biomater Artif Organs, 18(2), 219-224.
[46] Ji, C., Annabi, N., Khademhosseini, A., & Dehghani, F. (2011). Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO_2. Acta Biomaterialia, 7(4), 1653-1664.
[47] Baier Leach, J., Bivens, K. A., Patrick Jr, C. W., & Schmidt, C. E. (2003). Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnology and bioengineering, 82(5), 578-589.
[48] Ovsianikov, A., Deiwick, A., Van Vlierberghe, S., Dubruel, P., Möller, L., Dräger, G., & Chichkov, B. (2011). Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 12(4), 851-858.
[49] Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical reviews, 101(7), 1869-1880.
[50] Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 3(3), 1746-1767.
[51] Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., & Anseth, K. S. (2008). Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in polymer science, 33(2), 167-179.
[52] Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24(24), 4337-4351.
[53] Gutowska, A., Jeong, B., & Jasionowski, M. (2001). Injectable gels for tissue engineering. The Anatomical Record: An Official Publication of the American Association of Anatomists, 263(4), 342-349.
[54] Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23(22), 4307-4314.
[55] Hou, Q., Paul, A., & Shakesheff, K. M. (2004). Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry, 14(13), 1915-1923.
[56] Krishnakumar, G. S., Sampath, S., Muthusamy, S., & John, M. A. (2019). Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: a systematic review. Materials Science and Engineering: C, 96, 941-954.
[57] 洪承暉。(2018)。使用微型閥並具備自動平台校正功能之三維生物列印機開發,國立中央大學,碩士論文。
[58] Park, S. H., Yang, D. Y., & Lee, K. S. (2009). Two-photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices. Laser & Photonics Reviews, 3(1-2), 1-11.
[59] Bieda, M., Bouchard, F., & Lasagni, A. F. (2016). Two-photon polymerization of a branched hollow fiber structure with predefined circular pores. Journal of Photochemistry and Photobiology A: Chemistry, 319, 1-7.
[60] Park, S. H., Lim, T. W., Yang, D. Y., Yi, S. W., Kong, H. J., & Lee, K. S. (2005). Direct nano-patterning methods using nonlinear absorption in photopolymerization induced by a femtosecond laser. Journal of Nonlinear Optical Physics & Materials, 14(03), 331-340.
[61] Occhetta, P., Sadr, N., Piraino, F., Redaelli, A., Moretti, M., & Rasponi, M. (2013). Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication, 5(3), 035002.
[62] Liu, W., Heinrich, M. A., Zhou, Y., Akpek, A., Hu, N., Liu, X., Guan, X., Jin, X., Khademhosseini, A., Zhang, Y. S., & Zhang, Y, S.(2017). Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Advanced healthcare materials, 6(12), 1601451.
[63] Han, W. T., Jang, T., Chen, S., Chong, L. S. H., Jung, H. D., & Song, J. (2020). Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach. Biomaterials science, 8(1), 450-461. |