博碩士論文 993403010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.117.107.188
姓名 劉有量(Yu-Liang Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎳基高速燃氣熔射塗層耐磨性能研究
(Study on the Structures and Wear Behaviors of HVOF-Sprayed Ni-MoS2 Coatings)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究係以二硫化鉬為核心,以無電鍍法將鎳包覆於二硫化鉬外部,製備鎳-二硫化鉬粉末,並配合高速燃氣熔射在1020低碳鋼基材上進行鎳-二硫化鉬熔射塗層製備,透過各種材料檢測技術 (如SEM/EDS、ICP-AES、XRD、硬度值及附著力等) 進行鎳-二硫化鉬複合粉末及熔射塗層之外觀、結構、成分、硬度、附著力等材料性質探討。並依據ASTM G99規範,於乾摩擦情況下以球-圓盤磨耗實驗來進行鎳-二硫化鉬熔射塗層耐磨性能評估。
實驗結果證明本法確實可製備以鎳為基底、二硫化鉬為分散相之鎳-二硫化鉬熔射塗層,且其磨耗機理係由二硫化鉬作為固體潤滑劑,屬低摩擦複合塗層;惟熔射過程中產生高溫,部分二硫化鉬燒失,以致鎳-二硫化鉬熔射塗層中二硫化鉬含量降低。依據磨耗試驗Ⅰ結果分析,在低負荷下 (< 15 N) ,鎳-二硫化鉬熔射塗層重量損失甚微,隨著負荷增加 (> 30 N) ,鎳-二硫化鉬熔射塗層的重量損失則快速增加。另比較純鎳熔射塗層與鎳-二硫化鉬熔射塗層之平均磨耗率,純鎳較鎳-二硫化鉬熔射塗層高出40倍,顯示添加二硫化鉬之鎳-二硫化鉬熔射塗層耐磨性顯著提升。
另為研究鎳-二硫化鉬熔射塗層歷經高溫環境後之材料性質與減摩性能,在完成鎳-二硫化鉬熔射塗層後,將鎳-二硫化鉬熔射塗層試片置入數位溫控高溫爐,完成不同熱處理溫度製程後,執行磨耗實驗。結果顯示,鎳-二硫化鉬熔射塗層熱處理達500°C時,二硫化鉬氧化生成二氧化鉬晶體,且晶體生長係經汽化-冷凝機制,先從鎳-二硫化鉬熔射塗層內部汽化後在外部凝結生長出二氧化鉬晶體。此過程造成鎳-二硫化鉬熔射塗層孔隙率增大,結構趨於鬆散,導致大大降低鎳-二硫化鉬熔射塗層的硬度、結合強度與增加鎳-二硫化鉬熔射塗層的耐磨耗量,故高溫操作溫度應避免超過500°C。
摘要(英) In this study, the wear resistance of thermally sprayed Ni-MoS2 composite coatings on an AISI 1020 steel substrate was investigated. Ni-MoS2 composite powder (size: 60-90 μm) containing 25 wt.% of dispersed MoS2 was prepared by electroless plating. Ni-MoS2 composite coatings were then prepared by HVOF thermal spraying. The coatings were characterized by structural, surface morphologies and compositional analyses by means of microhardness tests, SEM/EDS, XRD, and ICP-AES. For the evaluation of their anti-wear properties, the composites were subjected to ball-on-disk dry wear tests based on the ASTM G99 standard at room temperature.
Experimental results showed that some of the MoS2 content dispersed in the Ni-based composite coating burnt away during the high-temperature spraying process, thereby reducing the MoS2 concentration in the coating. In the wear test, the weight loss in the Ni-MoS2 composite coating was minimal under a low load (< 15 N) but increased rapidly with increasing load (> 30 N). The average wear rate of the coatings was found to be ~1/40 times that of a pure Ni coating, showing that the wear resistance of the composite coatings was significantly improved by MoS2 addition.
The coatings were then subjected to heat treatments. Various surface inspection techniques including hardness test, scanning electron microscopy, and X-ray fluorescence were then used to characterize the composition and mechanical properties of the composite HVOF coating. In addition, ball-on-disc tests were carried out under dry abrasive conditions, on specimens that were heat treated at different temperatures, according to the ASTM G99 standard. The wear of each specimen was observed and recorded, and the measurements were used to provide a comprehensive assessment of the coating’s wear resistance. When the Ni-MoS2 composite coating was heat treated at 500°C, the growth of MoO2 crystals evaporates from the inward, and condenses as the protruding oxide crystals on the surface, which led to an increase in porosity and structural looseness. Consequently, the hardness and structural strength of the coating decreased significantly, which dramatically decrease its wear resistance.
關鍵字(中) ★ 熱處理
★ 耐磨
★ 高速燃氣熔射
★ 鎳-二硫化鉬
關鍵字(英)
論文目次 中文摘要 I
英文摘要 III
誌謝 V
總目錄 VII
圖目錄 X
表目錄 XIII
符號說明 XIV
第一章、 前言 1
1.1研究背景 1
1.2研究動機與目的 4
第二章、 文獻回顧 5
2.1鎳金屬簡介 5
2.2固體潤滑劑種類及其應用 7
2.2.1結構性固體潤滑劑 8
2.2.2機械性固體潤滑劑 14
2.2.3皂類 15
2.2.4化學活性潤滑劑 16
2.3熔射技術及其應用 17
2.3.1 火焰熔射 19
2.3.2 電弧熔射 20
2.3.3 電漿熔射 21
2.3.4 高速燃氣熔射 22
2.4 熔射複合塗層種類 27
2.5熱處理對塗層影響 30
2.6磨耗機制 31
2.7磨耗試驗 34
第三章、 研究方法 38
3.1鎳-二硫化鉬粉末製備 38
3.2鎳-二硫化鉬塗層製備 39
3.3熱處理 39
3.4微觀結構觀察 40
3.5成份分析 40
3.6重量量測 41
3.7硬度量測 42
3.8附著力測試 42
3.9磨耗試驗 43
第四章、 結果與討論 45
4.1表面結構觀察 45
4.2成分分析 46
4.3硬度量測 48
4.4附著力測試 49
4.5磨耗試驗 49
第五章、 結論 53
第六章、 未來研究方向 56
附錄A ASTM G99 規範資料 91
附錄B ASTM E18 規範資料 93
附錄C ASTM D4541 規範資料 95
參考文獻 96
參考文獻 [1] S. Ghaziof, M. A. Golozar and K. Raeissi, “Characterization of As-Deposited and Annealed Cr-C Alloy Coatings Produced from a Trivalent Chromium Bath,” Journal of Alloys and Compounds, Vol. 496, Iss. 1-2, pp. 164-168, 2010.
[2] C. A. Huang, U. W. Lieu and C. H. Chuang, “Role of Nickel Undercoat and Reduction-Flame Heating on the Mechanical Properties of Cr-C Deposit Electroplated from a Trivalent Chromium Based Bath,” Surface and Coatings Technology, Vol. 203, Iss. 19, pp. 2921-2926, 2009.
[3] S. Ghaziof, K. Raeissi and M. A. Golozar, “Improving the Corrosion Performance of Cr-C Amorphous Coatings on Steel Substrate by Modifying the Steel Surface Preparation,” Surface and Coatings Technology, Vol. 205, Iss. 7, pp. 2174-2183, 2010.
[4] 王立平、方善宏、曾志翔,代硬鉻鍍層材料及工藝,科學出版社,北京,民國104年。
[5] Y. Wu, F. Wang, Y. Cheng and N. Chen, “A Study of the Optimization Mechanism of Solid Lubricant Concentration in Ni/MoS2 Self-lubricating Composite,” Wear, Vol. 205, Iss. 1-2, pp. 64-70, 1997.
[6] F. J. Clauss, Solid Lubricants and Self-lubricating Solids, Elsevier, New York, 1972.
[7] M. H. Li and P. D. Christofides, “Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review,” Journal of Thermal Spray Technology, Vol. 18, Iss. 5-6, pp. 753-768, 2009.
[8] J. Rodriguez, A. Martin, R. Fernandez and J. E. Fernandez, “An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings,” Wear, Vol. 255, Iss. 7-12, pp. 950-955, 2003.
[9] A. Martin, J. Rodriguez and J. E. Fernandez, “Sliding Wear Behaviour of Plasma Sprayed WC-NiCrBSi Coatings at Different Temperatures,” Wear, Vol. 250-251, Iss. 2, pp. 1017-1022, 2001.
[10] J. L. Li and D. S. Xiong, “Tribological Properties of Nickel-based Self-lubricating Composite at Elevated Temperature and Counterface Material Selection,” Wear, Vol. 265, Iss. 3-4, pp. 533-539, 2008.
[11] M. B. Peterson, S. Z. Li and S. F. Murray, “Wear Resistant Oxide Films for 900℃,” Final Report, Argone National Laboratory, Subcontract No. 20082401, ANL/OTM/CR-5, 1994.
[12] M. Morinaga, A Quantum Approach to Alloy Design, Elsevier, New York, 2019.
[13] S. Shawki and Z. A. Hamid, “Deposition of High Wear Resistance of Ni-composite Coatings,” Aircraft Engineering and Aerospace Technology, Vol. 69, Iss. 5, pp. 432-439, 1997.
[14] K. I. Lee and K. Ogawa, “Improved Deposition Efficiency of Cold-sprayed CoNiCrAlY with Pure Ni Coatings and Its High-temperature Oxidation Behavior after Pre-treatment in Low Oxygen Partial Pressure,” Materials Transactions, Vol. 55, No. 9, pp. 1434-1439, 2014.
[15] J. Eichler and C. Lesniak, “Boron Nitride (BN) and BN Composites for High-temperature Applications,” Journal of the European Ceramic Society, Vol. 28, Iss. 5, pp. 1105-1109, 2008.
[16] Y. Kimura, T. Wakabayashi, K. Okada, T. Wada and H. Nishikawa, “Boron Nitride as a Lubricant Additive “, Wear, Vol. 232, Iss. 2, pp. 199-206, 1999.
[17] B. Chen, Q. Bi, J. Yang, Y. Xia and J. Hao, “Tribological Properties of Solid Lubricants (Graphite, H-BN) for Cu-based P/M Friction Composites,” Tribology International, Vol. 41, Iss. 12, pp. 1145-1152, 2008.
[18] E. Pompei, L. Magagnin, N. Lecis and P.L. Cavallotti, “Electrodeposition of Nickel–BN Composite Coatings,” Electrochimica Acta, Vol. 54, Iss. 9, pp. 2571-2574, 2009.
[19] A. Pauschitz, E. Badisch, M. Roy and D. V. Shtansky, “On the Scratch Behaviour of Self-lubricating WSe2 Films,” Wear, Vol. 267, Iss. 11, pp. 1909-1914, 2009.
[20] A. H. Wang, X. L. Zhang, X. F. Zhang, X. Y. Qiao, H. G. Xu and C. S. Xie, “Ni-based Alloy/Submicron WS2 Self-lubricating Composite Coating Synthesized by Nd:YAG Laser Cladding,” Materials Science and Engineering: A, Vol. 475, Iss. 1-2, pp. 312-318, 2008.
[21] M. F. Cardinal, P. A. Castro, J. Baxi , H. Liang and F. J. Williams, “Characterization and Frictional Behavior of Nanostructured Ni–W–MoS2 Composite Coatings,” Surface and Coatings Technology, Vol. 204, Iss. 1-2, pp. 85-90, 2009.
[22] Y. Kagohara, S. Takayanagi, S. Haneda, M. Fujita and Y. Iwai, “Tribological Property of Plain Bearing With Low Frictional Layer,” Tribology International, Vol. 42, Iss. 11-12, pp. 1800-1806, 2009.
[23] R. S. Bhattacharya, “Low Friction and Wear Surface for Application over a Wide Range of Temperature,” Final Report, Wright laboratory, Subcontract No. OH 45433-7734, WL-TR-97-4110, 1997.
[24] Y. L. Liu, M.C.Jeng, J.R. Hwang and C.H.Chang, “A Study on Wear Resistance of HVOF Sprayed Ni-MoS2 Self-lubricating Composite Coating,” Journal of Thermal Spray Technology, Vol. 24, Iss. 3, pp. 483-495, 2015.
[25] L. Rapoport, A. Moshkovicha, V. Perfilyeva, A. Gedankenb, Yu. Koltypinb, E. Sominskib, G. Halperinc and I. Etsion, “Wear Life and Adhesion of Solid Lubricant Films on Laser-textured Steel Surfaces,” Wear, Vol. 267, Iss. 5-8, pp. 1203-1207, 2009.
[26] A. Khoddamzadeh, R. Liu and X. Wu, “Novel Polytetrafluoroethylene (PTFE) Composites With Newly Developed Tribaloy Alloy Additive for Sliding Bearings,” Wear, Vol. 266, Iss. 7-8, pp. 646-657, 2009.
[27] 蕭威典,熔射覆膜技術,全華科技圖書股份有限公司,台北市,2006。
[28] 邱美玲譯,”噴銲技術之現況與未來”,機械月刊,第三十卷,第十二期,112-118頁,2004。
[29] 台灣科敏股份有限公司,取自http://www.versa-tech.com.tw/index.asp。
[30] E. R. Sampson, “Thermal Spray Coatings for Corrosion Protection : An Overview,” Materials Performance, pp. 27-30, 1997.
[31] B. Fitzsimons, “Thermal Spray Metal Coatings for Corrosion Protection,” Corrosion Management, pp. 35-41, 1996.
[32] L. E. Weiss, F. B. Prinz and E. L. Gursoz, Rapid Tool Manufacturing, U.S. Patent 5, Vol. 189, p. 781, 1993.
[33] L. E. Weiss, D. G. Thuel, L. Schultz and F. B. Prinz, “Arc Sprayed Steel-faced Tooling,” Journal of Thermal Spray Technology, Vol. 3, No. 3, pp. 275-281, 1994.
[34] L. E. Weiss and F. B. Prinz, “A Thermal Spray Approach to Rapid Prototyping - An Extended Abstract,” Journal of Thermal Spray Technology, Vol. 3, No. 3, pp. 297-298, 1994.
[35] S. D. Cramer, B. S. Covino Jr, G. R. Holcomb, S. J. Bullard, W. K. Collins, R. D. Govier, R. D. Wilson and H. M. Laylor, “Thermal Sprayed Titanium Anode for Cathodic Protection of Reinforced Concrete Bridges,” Journal of Thermal Spray Technology, Vol. 8, No.1, pp. 133-145, 1999.
[36] R. A. Sulit, T. Call and D. Hubert, “Arc Sprayed Aluminum Composite Non-skid Coatings for Airfield Landing Mats,” Surface Engineering, Vol. 10, Iss. 1, pp. 445-450, 1994.
[37] H. Liao, B. Normand and C. Coddet, “Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings,” Surface and Coatings Technology, Vol. 124, Iss. 2-3, pp. 235-242, 2000.
[38] C. J. Li, Y. Y. Wang, G. J. Yang, A. Ohmori and K. A. Khor, “Effect of Solid Carbide Particle Size on Deposition Behaviour, Microstructure and Wear Performance of HVOF Cermet Coatings,” Materials Science and Technology, Vol. 20, Iss. 9, pp. 1087-1096, 2004.
[39] P. L. Ko, and M. F. Robertson, “Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC–10 Co–4 Cr Coatings Sliding Against Al–Ni–bronze in Air at 21℃ and at −40 ℃,” Wear, Vol. 252, Iss. 11-12, pp. 880-893, 2002.
[40] V. V. Sobolev and J. M. Guilemany, “Oxidation of Coatings in Thermal Spraying,” Materials Letters, Vol. 37, Iss. 4-5, pp. 231-235, 1998.
[41] V. V. Sobolev and J. M. Guilemany, “Influence of Wetting and Surface Effects on Splat Formation During Thermal Spraying,” Materials Letters, Vol. 37, Iss. 3, pp. 132-137, 1998.
[42] V. V. Sobolev, “Formation of Splat Morphology During Thermal Spraying,” Materials Letters, Vol. 36, Iss. 1-4, pp. 123-127, 1998.
[43] V. V. Sobolev and J. M. Guilemany, “Effect of Substrate Deformation on Droplet Flattening in Thermal Spraying,” Materials Letters, Vol. 35, Iss. 5-6, pp. 324-328, 1998.
[44] V. V. Sobolev and J. M. Guilemany, “Droplet-substrate Impact Interaction in Thermal Spraying,” Materials Letters, Vol. 28, Iss. 4-6, pp. 331-335, 1996.
[45] V. V. Sobolev, J. M. Guilemany and A. J. Martin, “Analysis of Splat Formation During Flattening of Thermally Sprayed Droplets,” Materials Letters, Vol. 29, Iss. 1-3, pp. 185-190, 1996.
[46] V. V. Sobolev, J. M. Guilemany, J. Nutting and J. R. Miquel, “Development of Substrate-coating Adhesion in Thermal Spraying,” International Materials Reviews, Vol. 42, Iss. 3, pp. 117-136, 1997.
[47] V. V. Sobolev and J. M. Guilemany, “Influence of Solidification on the Flattening of Droplets During Thermal Spraying,” Materials Letters, Vol. 28, Iss. 1-3, pp. 71-75, 1996.
[48] V. V. Sobolev and J. M. Guilemany, “Formation of Splats During Thermal Spraying of Composite Powder Particles,” Materials Letters, Vol. 42, Iss. 1-2, pp. 46-51, 2000.
[49] J. A. Picas, A. Forn, G. Matthaus, “HVOF Coatings as an Alternative to Hard Chrome for Pistons and Valves,” Wear, Vol. 261, Iss. 5-6, pp. 477-484, 2006.
[50] 葉俊傑,高速火焰熔射碳化鎢/鈷塗層之特性研究,逢甲大學材料科學學系,碩士論文,2004。
[51] 楊士賢,高速火焰熔射之碳化鉻-鎳鉻塗層性質研究,國立交通大學機械工程學系,碩士論文,1994。
[52] T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet, “Structure and Wear Behaviour of HVOF Sprayed Cr3C2-NiCr and WC-Co Coatings,” Materials and Design, Vol. 24, No. 5, pp. 309-313, 2003.
[53] L. Valentinelli, T. Valente, F. Casadei and L. Fedrizzi, “Mechanical and Tribocorrosion Properties of HVOF Sprayed WC-Co Coatings,” Corrosion Engineering Science and Technology, Vol. 39, No. 4, pp. 301-307, 2004.
[54] P. L. Ko and M. F. Robertson, “Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC-10Co-4Cr Coatings Sliding against Al-Ni-Bronze in Air at 21°C and at -40°C,” Wear, Vol. 252, No. 11-12, pp. 880-893, 2002.
[55] M. Q. Xue, Z. D. Huang and D. S. Xiong, “Tribological Properties of Ni – based Alloy with Different Content Graphite,” Wear, Vol. 267, Iss. 5-8, pp. 1203-1207, 2009.
[56] X. Zhang, X. Zhang, A. Wang and Z. Huang, “Microstructure and Properties of HVOF Sprayed Ni-based Submicron WS2/CaF2 Self-lubricating Composite Coating,” Transactions of Nonferrous Metals Society of China, Vol. 19, Iss. 1, pp. 85-70, 2009.
[57] L. Xie, Y. M. Wang, X. Xiong, Z. K. Chen, “Comparison of Microstructure and Tribological Properties of Plasma, High Velocity Oxy-Fuel and Detonation Sprayed Coatings from an Iron-Based Powder,” Materials Transactions, Vol. 59, No. 10, pp. 1591-1595, 2018.
[58] X. J. Liu, B. C. Xu, S. I. Ma and Z. G. Chen, “Study of the Tribological Behavior of an Ni Electron Brush-plating Layer on a Base of an Arc Sprayed Coating,” Wear, Vol. 211, Iss. 2, pp. 151-155, 1997.
[59] P. Jokinen, K. Korpiola and A. Mahiout, “Duplex Coating of Electroless Nickel and HVOF (High-Velocity Oxygen Fuel) Sprayed WC/Co,” Journal of Thermal Spray Technology, Vol. 9, No. 2, pp. 241-244, 2000.
[60] J. H. Ahn, B. C. Hwang, and S. H. Lee, “Improvement of Wear Resistance of Plasma-sprayed Molybdenum Blend Coatings,” Journal of Thermal Spray Technology, Vol. 14, Iss. 2, pp. 251-257, 2005.
[61] 吳中仁,以電漿熔射法製備漸進塗層之熱疲勞研究,私立逢甲大學材料與製造工程學系,碩士論文,民國九十五年。
[62] B. S. Xu, Z. X. Zhu, S. N. Ma, W. Zhang and W. M. Liu, “Sliding Wear Behavior of Fe–Al and Fe–Al/WC Coatings Prepared by High Velocity Arc Spraying,” Wear, Vol. 257, Iss. 11, pp. 1089-1095, 2004.
[63] L. H. Chiu, H. A. Lin, C. C. Chen, C. F. Yang, C. H. Chang and J. C. Wu, “Effect of Aluminum Coatings on Corrosion Properties of AZ31 Magnesium Alloy,” Materials Science Forum,Vol. 419-4, pp. 909-914, 2003.
[64] Y. Wu, F. Wang, Y. Cheng and N. Chen, “A Study of the Optimization Mechanism of Solid Lubricant Concentration in Ni/MoS2 Self-lubricating Composite,” Wear, Vol. 205, Iss. 1-2, pp. 64-70, 1997.
[65] S. X. Zhang, P. Di, M. K. Xu and S. G. Zhu, “Effects of Induction Remelting and Heat Treatment on WC Reinforced Ni-based Alloy Coatings,” China Surface Engineering, Vol. 29, No.1, pp. 46-50, 2016.
[66] H. H. Chen, C. Y. Xu, Z. T. Wang and H. Y. Zhao, “Microstructure Change of WC Particles Reinforced Nickel Based Alloy Laser Cladding Coatings during Heat Treatment,” China Surface Engineering, Vol. 23, No. 2, pp. 64-68, 2010.
[67] 侯光煦,脈衝電流電鑄Ni-P鍍層之磨潤特性研究,博士論文,國立中央大學,桃園,第21-22頁,民國九十五年。
[68] K. G. Budinski, “Hardfacing III: The Wear Process,” Welding Design and Fabrication, pp. 40-47, 1986.
[69] 溫慶三,鐵鉬碳鈦銲覆合金化塗層之抗高溫磨耗性質研究,碩士論文,國立中山大學,高雄,第6-7頁,民國九十年。
[70] J. Archard, “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, pp. 981-988, 2004.
[71] 李克讓,磨潤工程,中國機械工程學會,民國六十七年。
[72] 劉家浚等,材料磨耗原理及其耐磨性,清華大學出版社,民國八十二年。
[73] “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” ASTM-G99, American Society for Testing and Materials, United States of America, 2016.
[74] “Standard Test Method for Rockwell Hardness of Metallic Materials,” ASTM-E18, American Society for Testing and Materials, United States of America, 2019.
[75] “Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers,” ASTM-E18, American Society for Testing and Materials, United States of America, 2010.
[76] L. Wang, G. H. Zhang, J. Dang and K. C. Chou, “Oxidation Roasting of Molybdenite Concentrate,” Transactions of Nonferrous Metals Society of China, Vol. 25, Iss. 12, pp. 4167-4174, 2015.
[77] G. M. Li, D. H. Wang, X. B. Jin and G. Z. Chen, “Electrolysis of Solid MoS2 in Molten CaCl2 for Mo Extraction Without CO2 Emission,” Electrochemistry Communications, Vol. 9, Iss. 8, pp. 1951-1957, 2007.
[78] T. Marin, T. Utigard and C. Hernandez, “Roasting Kinetics of Molybdenite Concentrates,” Canadian Metallurgical Quarterly, Vol. 48, Iss. 1, pp. 73-80, 2009.
指導教授 黃俊仁 鄭銘章 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明