參考文獻 |
[1] S. Ghaziof, M. A. Golozar and K. Raeissi, “Characterization of As-Deposited and Annealed Cr-C Alloy Coatings Produced from a Trivalent Chromium Bath,” Journal of Alloys and Compounds, Vol. 496, Iss. 1-2, pp. 164-168, 2010.
[2] C. A. Huang, U. W. Lieu and C. H. Chuang, “Role of Nickel Undercoat and Reduction-Flame Heating on the Mechanical Properties of Cr-C Deposit Electroplated from a Trivalent Chromium Based Bath,” Surface and Coatings Technology, Vol. 203, Iss. 19, pp. 2921-2926, 2009.
[3] S. Ghaziof, K. Raeissi and M. A. Golozar, “Improving the Corrosion Performance of Cr-C Amorphous Coatings on Steel Substrate by Modifying the Steel Surface Preparation,” Surface and Coatings Technology, Vol. 205, Iss. 7, pp. 2174-2183, 2010.
[4] 王立平、方善宏、曾志翔,代硬鉻鍍層材料及工藝,科學出版社,北京,民國104年。
[5] Y. Wu, F. Wang, Y. Cheng and N. Chen, “A Study of the Optimization Mechanism of Solid Lubricant Concentration in Ni/MoS2 Self-lubricating Composite,” Wear, Vol. 205, Iss. 1-2, pp. 64-70, 1997.
[6] F. J. Clauss, Solid Lubricants and Self-lubricating Solids, Elsevier, New York, 1972.
[7] M. H. Li and P. D. Christofides, “Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review,” Journal of Thermal Spray Technology, Vol. 18, Iss. 5-6, pp. 753-768, 2009.
[8] J. Rodriguez, A. Martin, R. Fernandez and J. E. Fernandez, “An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings,” Wear, Vol. 255, Iss. 7-12, pp. 950-955, 2003.
[9] A. Martin, J. Rodriguez and J. E. Fernandez, “Sliding Wear Behaviour of Plasma Sprayed WC-NiCrBSi Coatings at Different Temperatures,” Wear, Vol. 250-251, Iss. 2, pp. 1017-1022, 2001.
[10] J. L. Li and D. S. Xiong, “Tribological Properties of Nickel-based Self-lubricating Composite at Elevated Temperature and Counterface Material Selection,” Wear, Vol. 265, Iss. 3-4, pp. 533-539, 2008.
[11] M. B. Peterson, S. Z. Li and S. F. Murray, “Wear Resistant Oxide Films for 900℃,” Final Report, Argone National Laboratory, Subcontract No. 20082401, ANL/OTM/CR-5, 1994.
[12] M. Morinaga, A Quantum Approach to Alloy Design, Elsevier, New York, 2019.
[13] S. Shawki and Z. A. Hamid, “Deposition of High Wear Resistance of Ni-composite Coatings,” Aircraft Engineering and Aerospace Technology, Vol. 69, Iss. 5, pp. 432-439, 1997.
[14] K. I. Lee and K. Ogawa, “Improved Deposition Efficiency of Cold-sprayed CoNiCrAlY with Pure Ni Coatings and Its High-temperature Oxidation Behavior after Pre-treatment in Low Oxygen Partial Pressure,” Materials Transactions, Vol. 55, No. 9, pp. 1434-1439, 2014.
[15] J. Eichler and C. Lesniak, “Boron Nitride (BN) and BN Composites for High-temperature Applications,” Journal of the European Ceramic Society, Vol. 28, Iss. 5, pp. 1105-1109, 2008.
[16] Y. Kimura, T. Wakabayashi, K. Okada, T. Wada and H. Nishikawa, “Boron Nitride as a Lubricant Additive “, Wear, Vol. 232, Iss. 2, pp. 199-206, 1999.
[17] B. Chen, Q. Bi, J. Yang, Y. Xia and J. Hao, “Tribological Properties of Solid Lubricants (Graphite, H-BN) for Cu-based P/M Friction Composites,” Tribology International, Vol. 41, Iss. 12, pp. 1145-1152, 2008.
[18] E. Pompei, L. Magagnin, N. Lecis and P.L. Cavallotti, “Electrodeposition of Nickel–BN Composite Coatings,” Electrochimica Acta, Vol. 54, Iss. 9, pp. 2571-2574, 2009.
[19] A. Pauschitz, E. Badisch, M. Roy and D. V. Shtansky, “On the Scratch Behaviour of Self-lubricating WSe2 Films,” Wear, Vol. 267, Iss. 11, pp. 1909-1914, 2009.
[20] A. H. Wang, X. L. Zhang, X. F. Zhang, X. Y. Qiao, H. G. Xu and C. S. Xie, “Ni-based Alloy/Submicron WS2 Self-lubricating Composite Coating Synthesized by Nd:YAG Laser Cladding,” Materials Science and Engineering: A, Vol. 475, Iss. 1-2, pp. 312-318, 2008.
[21] M. F. Cardinal, P. A. Castro, J. Baxi , H. Liang and F. J. Williams, “Characterization and Frictional Behavior of Nanostructured Ni–W–MoS2 Composite Coatings,” Surface and Coatings Technology, Vol. 204, Iss. 1-2, pp. 85-90, 2009.
[22] Y. Kagohara, S. Takayanagi, S. Haneda, M. Fujita and Y. Iwai, “Tribological Property of Plain Bearing With Low Frictional Layer,” Tribology International, Vol. 42, Iss. 11-12, pp. 1800-1806, 2009.
[23] R. S. Bhattacharya, “Low Friction and Wear Surface for Application over a Wide Range of Temperature,” Final Report, Wright laboratory, Subcontract No. OH 45433-7734, WL-TR-97-4110, 1997.
[24] Y. L. Liu, M.C.Jeng, J.R. Hwang and C.H.Chang, “A Study on Wear Resistance of HVOF Sprayed Ni-MoS2 Self-lubricating Composite Coating,” Journal of Thermal Spray Technology, Vol. 24, Iss. 3, pp. 483-495, 2015.
[25] L. Rapoport, A. Moshkovicha, V. Perfilyeva, A. Gedankenb, Yu. Koltypinb, E. Sominskib, G. Halperinc and I. Etsion, “Wear Life and Adhesion of Solid Lubricant Films on Laser-textured Steel Surfaces,” Wear, Vol. 267, Iss. 5-8, pp. 1203-1207, 2009.
[26] A. Khoddamzadeh, R. Liu and X. Wu, “Novel Polytetrafluoroethylene (PTFE) Composites With Newly Developed Tribaloy Alloy Additive for Sliding Bearings,” Wear, Vol. 266, Iss. 7-8, pp. 646-657, 2009.
[27] 蕭威典,熔射覆膜技術,全華科技圖書股份有限公司,台北市,2006。
[28] 邱美玲譯,”噴銲技術之現況與未來”,機械月刊,第三十卷,第十二期,112-118頁,2004。
[29] 台灣科敏股份有限公司,取自http://www.versa-tech.com.tw/index.asp。
[30] E. R. Sampson, “Thermal Spray Coatings for Corrosion Protection : An Overview,” Materials Performance, pp. 27-30, 1997.
[31] B. Fitzsimons, “Thermal Spray Metal Coatings for Corrosion Protection,” Corrosion Management, pp. 35-41, 1996.
[32] L. E. Weiss, F. B. Prinz and E. L. Gursoz, Rapid Tool Manufacturing, U.S. Patent 5, Vol. 189, p. 781, 1993.
[33] L. E. Weiss, D. G. Thuel, L. Schultz and F. B. Prinz, “Arc Sprayed Steel-faced Tooling,” Journal of Thermal Spray Technology, Vol. 3, No. 3, pp. 275-281, 1994.
[34] L. E. Weiss and F. B. Prinz, “A Thermal Spray Approach to Rapid Prototyping - An Extended Abstract,” Journal of Thermal Spray Technology, Vol. 3, No. 3, pp. 297-298, 1994.
[35] S. D. Cramer, B. S. Covino Jr, G. R. Holcomb, S. J. Bullard, W. K. Collins, R. D. Govier, R. D. Wilson and H. M. Laylor, “Thermal Sprayed Titanium Anode for Cathodic Protection of Reinforced Concrete Bridges,” Journal of Thermal Spray Technology, Vol. 8, No.1, pp. 133-145, 1999.
[36] R. A. Sulit, T. Call and D. Hubert, “Arc Sprayed Aluminum Composite Non-skid Coatings for Airfield Landing Mats,” Surface Engineering, Vol. 10, Iss. 1, pp. 445-450, 1994.
[37] H. Liao, B. Normand and C. Coddet, “Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings,” Surface and Coatings Technology, Vol. 124, Iss. 2-3, pp. 235-242, 2000.
[38] C. J. Li, Y. Y. Wang, G. J. Yang, A. Ohmori and K. A. Khor, “Effect of Solid Carbide Particle Size on Deposition Behaviour, Microstructure and Wear Performance of HVOF Cermet Coatings,” Materials Science and Technology, Vol. 20, Iss. 9, pp. 1087-1096, 2004.
[39] P. L. Ko, and M. F. Robertson, “Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC–10 Co–4 Cr Coatings Sliding Against Al–Ni–bronze in Air at 21℃ and at −40 ℃,” Wear, Vol. 252, Iss. 11-12, pp. 880-893, 2002.
[40] V. V. Sobolev and J. M. Guilemany, “Oxidation of Coatings in Thermal Spraying,” Materials Letters, Vol. 37, Iss. 4-5, pp. 231-235, 1998.
[41] V. V. Sobolev and J. M. Guilemany, “Influence of Wetting and Surface Effects on Splat Formation During Thermal Spraying,” Materials Letters, Vol. 37, Iss. 3, pp. 132-137, 1998.
[42] V. V. Sobolev, “Formation of Splat Morphology During Thermal Spraying,” Materials Letters, Vol. 36, Iss. 1-4, pp. 123-127, 1998.
[43] V. V. Sobolev and J. M. Guilemany, “Effect of Substrate Deformation on Droplet Flattening in Thermal Spraying,” Materials Letters, Vol. 35, Iss. 5-6, pp. 324-328, 1998.
[44] V. V. Sobolev and J. M. Guilemany, “Droplet-substrate Impact Interaction in Thermal Spraying,” Materials Letters, Vol. 28, Iss. 4-6, pp. 331-335, 1996.
[45] V. V. Sobolev, J. M. Guilemany and A. J. Martin, “Analysis of Splat Formation During Flattening of Thermally Sprayed Droplets,” Materials Letters, Vol. 29, Iss. 1-3, pp. 185-190, 1996.
[46] V. V. Sobolev, J. M. Guilemany, J. Nutting and J. R. Miquel, “Development of Substrate-coating Adhesion in Thermal Spraying,” International Materials Reviews, Vol. 42, Iss. 3, pp. 117-136, 1997.
[47] V. V. Sobolev and J. M. Guilemany, “Influence of Solidification on the Flattening of Droplets During Thermal Spraying,” Materials Letters, Vol. 28, Iss. 1-3, pp. 71-75, 1996.
[48] V. V. Sobolev and J. M. Guilemany, “Formation of Splats During Thermal Spraying of Composite Powder Particles,” Materials Letters, Vol. 42, Iss. 1-2, pp. 46-51, 2000.
[49] J. A. Picas, A. Forn, G. Matthaus, “HVOF Coatings as an Alternative to Hard Chrome for Pistons and Valves,” Wear, Vol. 261, Iss. 5-6, pp. 477-484, 2006.
[50] 葉俊傑,高速火焰熔射碳化鎢/鈷塗層之特性研究,逢甲大學材料科學學系,碩士論文,2004。
[51] 楊士賢,高速火焰熔射之碳化鉻-鎳鉻塗層性質研究,國立交通大學機械工程學系,碩士論文,1994。
[52] T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet, “Structure and Wear Behaviour of HVOF Sprayed Cr3C2-NiCr and WC-Co Coatings,” Materials and Design, Vol. 24, No. 5, pp. 309-313, 2003.
[53] L. Valentinelli, T. Valente, F. Casadei and L. Fedrizzi, “Mechanical and Tribocorrosion Properties of HVOF Sprayed WC-Co Coatings,” Corrosion Engineering Science and Technology, Vol. 39, No. 4, pp. 301-307, 2004.
[54] P. L. Ko and M. F. Robertson, “Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC-10Co-4Cr Coatings Sliding against Al-Ni-Bronze in Air at 21°C and at -40°C,” Wear, Vol. 252, No. 11-12, pp. 880-893, 2002.
[55] M. Q. Xue, Z. D. Huang and D. S. Xiong, “Tribological Properties of Ni – based Alloy with Different Content Graphite,” Wear, Vol. 267, Iss. 5-8, pp. 1203-1207, 2009.
[56] X. Zhang, X. Zhang, A. Wang and Z. Huang, “Microstructure and Properties of HVOF Sprayed Ni-based Submicron WS2/CaF2 Self-lubricating Composite Coating,” Transactions of Nonferrous Metals Society of China, Vol. 19, Iss. 1, pp. 85-70, 2009.
[57] L. Xie, Y. M. Wang, X. Xiong, Z. K. Chen, “Comparison of Microstructure and Tribological Properties of Plasma, High Velocity Oxy-Fuel and Detonation Sprayed Coatings from an Iron-Based Powder,” Materials Transactions, Vol. 59, No. 10, pp. 1591-1595, 2018.
[58] X. J. Liu, B. C. Xu, S. I. Ma and Z. G. Chen, “Study of the Tribological Behavior of an Ni Electron Brush-plating Layer on a Base of an Arc Sprayed Coating,” Wear, Vol. 211, Iss. 2, pp. 151-155, 1997.
[59] P. Jokinen, K. Korpiola and A. Mahiout, “Duplex Coating of Electroless Nickel and HVOF (High-Velocity Oxygen Fuel) Sprayed WC/Co,” Journal of Thermal Spray Technology, Vol. 9, No. 2, pp. 241-244, 2000.
[60] J. H. Ahn, B. C. Hwang, and S. H. Lee, “Improvement of Wear Resistance of Plasma-sprayed Molybdenum Blend Coatings,” Journal of Thermal Spray Technology, Vol. 14, Iss. 2, pp. 251-257, 2005.
[61] 吳中仁,以電漿熔射法製備漸進塗層之熱疲勞研究,私立逢甲大學材料與製造工程學系,碩士論文,民國九十五年。
[62] B. S. Xu, Z. X. Zhu, S. N. Ma, W. Zhang and W. M. Liu, “Sliding Wear Behavior of Fe–Al and Fe–Al/WC Coatings Prepared by High Velocity Arc Spraying,” Wear, Vol. 257, Iss. 11, pp. 1089-1095, 2004.
[63] L. H. Chiu, H. A. Lin, C. C. Chen, C. F. Yang, C. H. Chang and J. C. Wu, “Effect of Aluminum Coatings on Corrosion Properties of AZ31 Magnesium Alloy,” Materials Science Forum,Vol. 419-4, pp. 909-914, 2003.
[64] Y. Wu, F. Wang, Y. Cheng and N. Chen, “A Study of the Optimization Mechanism of Solid Lubricant Concentration in Ni/MoS2 Self-lubricating Composite,” Wear, Vol. 205, Iss. 1-2, pp. 64-70, 1997.
[65] S. X. Zhang, P. Di, M. K. Xu and S. G. Zhu, “Effects of Induction Remelting and Heat Treatment on WC Reinforced Ni-based Alloy Coatings,” China Surface Engineering, Vol. 29, No.1, pp. 46-50, 2016.
[66] H. H. Chen, C. Y. Xu, Z. T. Wang and H. Y. Zhao, “Microstructure Change of WC Particles Reinforced Nickel Based Alloy Laser Cladding Coatings during Heat Treatment,” China Surface Engineering, Vol. 23, No. 2, pp. 64-68, 2010.
[67] 侯光煦,脈衝電流電鑄Ni-P鍍層之磨潤特性研究,博士論文,國立中央大學,桃園,第21-22頁,民國九十五年。
[68] K. G. Budinski, “Hardfacing III: The Wear Process,” Welding Design and Fabrication, pp. 40-47, 1986.
[69] 溫慶三,鐵鉬碳鈦銲覆合金化塗層之抗高溫磨耗性質研究,碩士論文,國立中山大學,高雄,第6-7頁,民國九十年。
[70] J. Archard, “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, pp. 981-988, 2004.
[71] 李克讓,磨潤工程,中國機械工程學會,民國六十七年。
[72] 劉家浚等,材料磨耗原理及其耐磨性,清華大學出版社,民國八十二年。
[73] “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” ASTM-G99, American Society for Testing and Materials, United States of America, 2016.
[74] “Standard Test Method for Rockwell Hardness of Metallic Materials,” ASTM-E18, American Society for Testing and Materials, United States of America, 2019.
[75] “Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers,” ASTM-E18, American Society for Testing and Materials, United States of America, 2010.
[76] L. Wang, G. H. Zhang, J. Dang and K. C. Chou, “Oxidation Roasting of Molybdenite Concentrate,” Transactions of Nonferrous Metals Society of China, Vol. 25, Iss. 12, pp. 4167-4174, 2015.
[77] G. M. Li, D. H. Wang, X. B. Jin and G. Z. Chen, “Electrolysis of Solid MoS2 in Molten CaCl2 for Mo Extraction Without CO2 Emission,” Electrochemistry Communications, Vol. 9, Iss. 8, pp. 1951-1957, 2007.
[78] T. Marin, T. Utigard and C. Hernandez, “Roasting Kinetics of Molybdenite Concentrates,” Canadian Metallurgical Quarterly, Vol. 48, Iss. 1, pp. 73-80, 2009. |