博碩士論文 108323609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:18.188.172.203
姓名 沙伊曼(Imang Eko Saputro)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 工業機械沖床正齒輪之熱處理實驗與數值研究
(Numerical and experiment investigation of the heat-treated spur gear for application in the industrial mechanical press)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-2以後開放)
摘要(中) 齒輪系統是常見的機械零組件之一(如機械沖床中),齒的耐磨性和抗疲勞性是影響齒輪壽命的關鍵因素,其可利用熱處理製程加以改善。為了提高齒輪的耐磨性,硬化能是主要的追求目標。如鋼鐵硬化處理中的淬火製程就扮演著重要的角色。然而,傳統以物理測試獲取的熱處理最佳化技術常須耗費龐大的勞力及物力(成本)。故數值模擬技術就是種有效降低成本的替代方式,該技術結合物理模型與數值計算方法,可應用於多數的熱處理製程。
本文建立正齒輪熱處理製程的數值模擬,研究齒輪的溫度變化、相變化和殘餘應力分佈。同時進行了相關的實驗驗證(數值)模擬的正確性。結果證實(數值)模擬具有相當的準確性。淬火時,冷卻時間對於麻田散鐵組織的分佈和硬化深度有很大的影響,而高熱傳係數的製程介質,不會影響(工件)最大硬度值,但會縮短達到最高硬度值的製程時間。齒根中較大的壓縮殘餘應力僅只出現在齒輪齒面的周圍,而朝齒根方向時則會逐漸減小。
摘要(英) Gear system is one of most common mechanical parts for machinery, such as mechanical press machine. Wear resistance and fatigue resistance of the teeth are the most critical factors influencing gear life and can be improved using heat treatment process. To improve wear resistance, the achievement of desired hardenability is the main goal. Therefore, the steel hardening technique such as induction hardening (commonly used in gear) and quenching process takes an important role for this treatment. However, traditional physical testing for optimizing heat treatment techniques must be obtained at the expense of large amounts of labor and materials. Numerical simulation, an economic alternative technique which is based on some physical models and by combining with some numerical calculation methods can become breakthrough solution for those numerous heat treatment tests.
A numerical method is built to simulate the induction hardening-heat treatment process of the spur gear. The evolution of temperature, phase transformation, and residual stress distribution of gear tooth have been studied according to the simulation results. The hardness experimental validation is also conducted to analyze the accuracy of the numerical method. As the results, the numerical method is not too accurate in predicting the real hardness distribution due to some issues such as measurement error, parameter data mismatch between simulation and real case, and skin depth phenomenon in induction hardening which is difficult to be implemented in numerical method. Cooling time during quenching takes a big role on the distribution of martensite evolution and the hardening depth, the higher heat transfer coefficient of quenchant does not increase the maximum hardness value, but shorten the quenching time to reach it, quenching process leaves massive compressive residual stresses in the root of gear teeth and tensile residual stresses in the tip of gear teeth, design of gear influence the distortion in the gear geometry.
關鍵字(中) ★ 硬化能
★ 熱處理
★ 機械沖壓機
★ 數值模擬
★ 淬火
★ 殘餘應力
★ 鋼硬化
關鍵字(英) ★ Hardenability
★ heat treatment
★ induction hardening
★ mechanical press machine
★ numerical simulation
★ quenching
★ residual stress
★ skin depth
★ steel hardening
論文目次 摘要 i
Abstract ii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1. Introduction 1
1.1 Heat treatment on the gear 1
1.2 Austenitizing process 2
1.3 Quenching process 4
1.4 Residual Stresses Due to Heat Treating 5
1.5 Distortion Due to Heat Treating 7
1.6 Induction Hardening on Commercial Spur Gear of Mechanical Press Machine 9
1.7 Objectives 13
Chapter 2. Theoretical Formulations and Computational Methods 14
2.1 Theoretical Formulations 14
2.1.1 Mathematical Model of Temperature Distribution 14
2.1.2 Mathematical Model of Microstructural Evolution 15
2.1.2.1 Diffusion-controlled phase transformation (ferrite, pearlite, and bainite evolution) 16
2.1.2.2 Diffusion-less phase transformation (martensite evolution) 17
2.1.3 Mathematical Model of Stress/Strain Fields 17
2.2 Computational Method 19
2.2.1 Defining geometry 19
2.2.2 Defining workpiece parameters 21
2.2.3 Stop and Boundary Conditions 25
Chapter 3. Results and Discussions 27
3.1.The Evolution of Temperature 27
3.2 The Phases Transformation 29
3.3 The Evolution of Hardness 30
3.4 The Hardness Experimental Measurement 32
3.5 The Evolution of Residual Stresses 37
3.6 The Investigation of Distortion Possibility in Gear Geometry 39
Chapter 4. Conclusion and Future Works 43
4.1 Conclusion 43
4.2 Future Works 44
References 45
參考文獻 [1] C. Şimşir and C. H. Gűr, "3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution," Journal of Materials Processing Tech., vol. 207, pp. 211-221, 2008.
[2] R. E. Haimbaugh, Practical Induction Heat Treating, Ohio, USA: ASM International, 2001.
[3] Song et al, "Numerical Simulation on Carburizing and Quenching of Gear Ring," Journal of Iron and Steel Research, vol. 14, no. 6, pp. 47-52, 2007.
[4] K. E. Song, B. C. Yang and C. S. Yin, "Simulation and Analysis of Surface Quenching Process of Spur Gear Based on ANSYS," IOP Conf. Series: [J] Hot Working Technology, vol. 44, no. 24, pp. 197-203, 2015.
[5] J. Z. Zhang et al, "Finite Element Simulation of Straight Tooth Cylindrical Gear Quenching Based on ANSYS," IOP Conf. Series: [J] Hot Working Technology, vol. 45, no. 20, pp. 245-247, 2016.
[6] X. Wang et al, "Distortion Control of Large Carburized Gear Shaft Based on Finite Element Analysis," IOP Conf. Series: [J] Heat Treatment of Metals, vol. 44, no. 4, pp. 239-242, 2019.
[7] Metallography, Structures, and Phase Diagrams, American Society for Metals, Vol.8, 1973.
[8] E. C. Bain and H. W. Paxton, Alloying Elements in Steel, American Society for Metals, 1961.
[9] A. K. Rakhit, Heat Treatments of Gear, ASM International, 2000.
[10] Heat Treating, ASM International Vol.4, 1991.
[11] K. Weiss, "Induction Tempering of Steel," Advance Material Processing, 1999.
[12] "Material Selection and Design," in ASM Handbook Vol. 20, ASM International, 1997.
[13] V. Rudnev, D. Loveless and R. L. Cook, Handbook of Induction Heating 2nd Edition, CRC Press, 2017.
[14] E. Scheil, Arch. Eisenhuttenwes, vol. 12, p. 565, 1935.
[15] W. A. Johnson and R. F. Mehl, Trans. AIME, vol. 135, pp. 416-458, 1939.
[16] D. P. Koistinen and R. E. Marburger, "A General Equation Prescribing the Extent of the Austenite-martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels," Acta Metall., vol. 7, pp. 59-60, 1959.
[17] C. H. Gűr and A. E. Tekkaya, "Numerical Investigation of Non-homogenous Plastic Deformation in Quenching Process," Mater. Sci. Eng. A., vol. 164, no. 9, pp. 319-321, 2001.
[18] L. Prandtl, "Spannungsverteilung in plastischen Körpern," in In: Proceedings of the 1st International Congress on Applied Mechanics, 1924.
[19] E. Reuss, "Beruecksichtigung der elastischen Formaenderungen in der plastizitaets- theorie," Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 10, pp. 266-274, 1930.
[20] A. J. Fletcher, "Thermal stress and strain generation in heat treatment," Springer, 1989.
[21] J. Trzaska, "Empirical Formulae for the Calculation of The Hardness of Steel Cooled from the Austenitizing Temperature," Arch. Metall. Mater, vol. 61, no. 3, pp. 981-986, 2016.
[22] J. M. Tartaglia, G. T. Eldis and J. J. Geissler, "Hyperbolic Secant Method for Predicting Jominy Hardenability: An Example Using 0.2C-Ni-Cr-Mo Steels," J. Heat Treating, vol. 4, no. 4, pp. 352-364, 1986.
[23] J. L. Lee and H. K. D. H. Bhadeshia, "A methodology for the prediction of time-temperature-transformation diagrams," Materials Science and Engineering, vol. A 171, pp. 223-230, 1993.
[24] Л. В. Петраш, "Закалочные среды / М.: МАШГИЗ," p. C. 30, 1959.
[25] H. Qvarnström, "Technical Note: A Mathematical Formula for Transformation between Hardness Scales of Rockwell C and Vickers," J. Heat Treat., vol. 7, pp. 65-67, 1989.


指導教授 傅 尹 坤(Yiin-kuen, Fuh) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明