博碩士論文 107323010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.116.65.125
姓名 郭庭君(Ting-Chun Kuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法電腦模擬探討顆粒體在不同置入物儲槽中的傳輸性質與內部性質
(Numerical Study on Transport and Internal Properties of Granular Materials in Cylindrical Silos with Different Inserts Using Discrete Element Modelling)
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 本研究採用離散元素法(Discrete Element Method, DEM)模擬顆粒體在六種置入物儲槽中循環排放時的流動與力學行為,此六種置入物分別為無置入物,倒圓錐型,圓片型,圓錐中空型,圓柱中空型,及儲槽中空型置入物,並提出切片法模型模擬顆粒體在儲槽中的流動行為,進一步分析置入物對儲槽中顆粒流傳輸性質與內部性質的影響,研究結果顯示:(1) 倒圓錐型、圓片型與圓錐中空型三種置入物儲槽顆粒體的垂直速度與徑向速度差異較小且較為均勻分佈,粒子溫度呈現更均勻分佈,滯留時間較為集中,質量流率皆較低,有助於改善儲槽中顆粒體的流動行為;(2) 六種置入物儲槽的粒子體積佔有率峰值皆約為0.62,在靠近儲槽邊壁或置入物邊壁區域的粒子體積佔有率較小,此外靠近中心處呈現更小的粒子體積佔有率;(3) 當六種置入物儲槽顆粒流態由均勻穩定轉換成不均勻時,呈現極大的正向應力。垂直應力分佈中可以發現由接觸力產生的架橋效應,倒圓錐型與圓片型置入物儲槽造成正向應力三個分量的峰值提高且範圍更廣,而儲槽中空型置入物儲槽在正向應力三個分量皆呈現最大值;(4) 六種置入物儲槽的Von Mises應力分佈與垂直應力分佈最為接近,這說明儲槽不論是否安裝置入物,儲槽內部應力的傳遞主要由垂直應力控制;(5)六種置入物儲槽中在傾斜邊壁與置入物上方區域受阻擋作用影響,均導致不均勻與不穩定顆粒流進而引起較強烈的異向性,以致應力比大於1.0,甚至高達2.4。
摘要(英) The purpose of this study is to investigate the flow and mechanical behavior of granular materials in cylindrical silos with six different inserts by using Discrete Element Method (DEM). These inserts include conical insert, disk insert, BINSERT, hollow cylinder insert and hollow silo insert. To substantially reduce computer time, a slice method is proposed to simulate the flow behavior of granular materials in the silo. Furthermore, the effect of insert geometry on transport properties and internal physical properties of the granular flow in the silo is analyzed. Key findings are highlighted as follow: (1) In the silos with conical insert, disk insert, and BINSERT, the granular flow exhibits more uniform vertical and radial velocity profiles. The granular temperature is evenly distributed, and the residence time is also relatively concentrated, the mass flow rate shows smaller values. (2) The peak value of solid fraction in the silos with six kinds of insert is approximately 0.62. The solid fraction shows smaller values near the silo walls and inserts. Furthermore, the solid fraction near the center shows the smallest values. (3) When the granular flow is transformed from stability to non-uniform, the granular assembly experiences a great normal stress. The spatial distribution of vertical stress demonstrates the arching phenomena caused by the contact force. The peak values of normal stress increase and its spatial distribution becomes wider in the silo with conical insert and disk insert. However, the normal stress for the silo with hollow silo insert shows large values. (4) Von Mises stress distribution in the silos shows very similar pattern to the vertical stress. This indicates that the stress state in the silos is dominated by the vertical stress. (5) The granular flow in the silos subject to obstruction is uneven and unstable and shows strong anisotropy, resulting in a stress ratio greater than 1.0, even up to 2.4.
關鍵字(中) ★ 三維儲槽
★ 顆粒物質
★ 置入物
★ 離散元素模擬
★ 傳輸性質
★ 內部性質
關鍵字(英) ★ 3D silo
★ granular materials
★ insert
★ discrete element modelling
★ transport property
★ internal physical property
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 儲槽內顆粒流動模式 1
1-3 文獻回顧 2
1-3-1 儲槽內顆粒體的傳輸性質 2
1-3-2 儲槽內顆粒體的內部性質 4
1-3-3 置入物儲槽顆粒流相關研究 5
1-4 研究動機與目的 7
1-5 研究架構 8
第二章 研究方法 9
2-1 離散元素法 9
2-1-1 離散元素法之架構 9
2-1-2 三維剛體運動方程式 10
2-1-3 接觸力模型 11
2-1-4 臨界時間步 13
2-2 離散元素電腦模擬 13
2-2-1 離散元素電腦模擬輸入參數 13
2-2-2 儲槽與置入物模型建模 14
2-2-3 切片法合理性驗證 15
2-2-4 時間與空間平均 16
2-3 顆粒流傳輸性質 17
2-3-1 局部平均速度 17
2-3-2 粒子擾動速度 18
2-3-3 粒子溫度 18
2-4 顆粒流內部性質 19
2-4-1 邊壁壓力 19
2-4-2 粒子體積佔有率 20
2-4-3 平均配位數 20
2-4-4 摩擦啟動因子 20
2-4-5 摩擦啟動因子概率分佈 21
2-4-6 接觸力強度 21
2-5 應力 22
2-5-1 應力張量 22
2-5-2 Von Mises 應力 24
第三章 結果與討論 26
3-1 置入物對顆粒體在儲槽傳輸性質影響 26
3-1-1 垂直速度分佈 26
3-1-2 徑向速度分佈 28
3-1-3 粒子溫度分佈 29
3-1-4 滯留時間分佈 31
3-1-5 擾動速度分佈 33
3-1-6 質量流率 34
3-2 置入物對顆粒體在儲槽內部性質的影響 35
3-2-1 邊壁法向壓力 35
3-2-2 邊壁垂直剪向壓力 36
3-2-3 粒子體積佔有率 37
3-2-4 平均配位數 38
3-2-5 摩擦啟動因子沿邊壁分佈 40
3-2-6 摩擦啟動因子的機率分佈 41
3-2-7 顆粒間摩擦啟動因子分佈 41
3-2-8 接觸力強度 42
3-3 置入物對顆粒流的應力分析 43
3-3-1 徑向應力 43
3-3-2 環向應力 44
3-3-3 垂直應力 46
3-3-4 剪應力 48
3-3-5 Von Mises 應力 49
3-3-6 應力比 51
第四章 結論 53
參考文獻 55
附表 59
附圖 63
參考文獻 [1] 朱敬平, 化學迴圈燃燒技術發展概況簡介, 中興工程, (2011) 63-72.
[2] A.W. Jenike, Storage and flow of solids, Bulletin No. 123, The University of Utah, (1964).
[3] A.W. Jenike, Gravity Flow of Bulk Solids Bulletin No. 108, The University of Utah, (1961).
[4] U. Tüzün, R. Nedderman, An investigation of the flow boundary during steady-state discharge from a funnel-flow bunker, Powder Technol., 31 (1982) 27-43.
[5] B.H. Pittenger, H. Purutyan, R. Barnum, Reducing/eliminating segregation problems in powdered metal processing. ii. methods of controlling segregation, P/M Science & Technology Briefs, 2 (2000) 10-13.
[6] J.W. Carson, Preventing particle segregation: a review of the primary causes and some practical solutions can help, Chem. Eng., 111 (2004) 29-32.
[7] P. Tang, V. Puri, Methods for minimizing segregation: a review, Part. Sci. Technol., 22 (2004) 321-337.
[8] M. Ostendorf, J. Schwedes, Application of particle image velocimetry for velocity measurements during silo discharge, Powder Technol., 158 (2005) 69-75.
[9] S. Albaraki, S.J. Antony, How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry, Powder Technol., 268 (2014) 253-260.
[10] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, geotechnique, 29 (1979) 47-65.
[11] H. Zhu, A. Yu, Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis, Granul. Matter, 7 (2005) 97-107.
[12] Y. Yu, H. Saxén, Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres, Adv. Powder Technol., 22 (2011) 324-331.
[13] V. Vidyapati, S. Subramaniam, Granular flow in silo discharge: discrete element method simulations and model assessment, Ind. Eng. Chem. Res., 52 (2013) 13171-13182.
[14] C.H. Rycroft, G.S. Grest, J.W. Landry, M.Z. Bazant, Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. E, 74 (2006) 021306.
[15] R. Balevičius, R. Kačianauskas, Z. Mroz, I. Sielamowicz, Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes, Adv. Powder Technol., 22 (2011) 226-235.
[16] C. González-Montellano, A. Ramirez, E. Gallego, F. Ayuga, Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos, Chem. Eng. Sci., 66 (2011) 5116-5126.
[17] H. Tao, B. Jin, W. Zhong, X. Wang, B. Ren, Y. Zhang, R. Xiao, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process., 49 (2010) 151-158.
[18] M. Madrid, K. Asencio, D. Maza, Silo discharge of binary granular mixtures, Phys. Rev. E, 96 (2017) 022904.
[19] H. Zhu, A. Yu, Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis, J. Phys. D Appl. Phys., 37 (2004) 1497.
[20] R. Kobyłka, J. Horabik, M. Molenda, Numerical simulation of the dynamic response due to discharge initiation of the grain silo, Int. J. Solids Streuct., 106 (2017) 27-37.
[21] T. Weinhart, C. Labra, S. Luding, J.Y. Ooi, Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow, Powder Technol., 293 (2016) 138-148.
[22] R. Balevičius, I. Sielamowicz, Z. Mróz, R. Kačianauskas, Effect of rolling friction on wall pressure, discharge velocity and outflow of granular material from a flat-bottomed bin, Particuology, 10 (2012) 672-682.
[23] C. González-Montellano, E. Gallego, Á. Ramírez-Gómez, F. Ayuga, Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results, Comput. Chem. Eng., 40 (2012) 22-32.
[24] Q. Zheng, A. Yu, Finite element investigation of the flow and stress patterns in conical hopper during discharge, Chem. Eng. Sci., 129 (2015) 49-57.
[25] A. Couto, A. Ruiz, P. Aguado, Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4, Powder Technol., 237 (2013) 450-467.
[26] S. Hsiau, J. Smid, C. Wang, J. Kuo, C. Chou, Velocity profiles of granules in moving bed filters, Chem. Eng. Sci., 54 (1999) 293-301.
[27] J. Haertl, J.Y. Ooi, J. Rotter, M. Wójcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des., 86 (2008) 370-378.
[28] M. Wójcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts—Full-scale experiments, Powder Technol., 222 (2012) 15-36.
[29] M. Wójcik, J. Härtl, J.Y. Ooi, M. Rotter, S. Ding, G.G. Enstad, Experimental Investigation of the Flow Pattern and Wall Pressure Distribution in a Silo with a Double‐Cone Insert, Part. Part. Syst. Char., 24 (2007) 296-303.
[30] H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) 177-183.
[31] S. Ding, A. Dyrøy, M. Karlsen, G. Enstad, M. Jecmenica, Experimental investigation of load exerted on a double-cone insert and effect of the insert on pressure along walls of a large-scale axisymmetrical silo, Part. Sci. Technol., 29 (2011) 127-138.
[32] S.C. Yang, S.S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol., 120 (2001) 244-255.
[33] S. Ding, H. Li, J. Ooi, J. Rotter, Prediction of flow patterns during silo discharges using a finite element approach and its preliminary experimental verification, Particuology, 18 (2015) 42-49.
[34] J. Wu, J. Binbo, J. Chen, Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol., 20 (2009) 62-73.
[35] R. Kobyłka, M. Molenda, DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction, Powder Technol., 256 (2014) 210-216.
[36] R. Kobyłka, M. Molenda, J. Horabik, Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis, Powder Technol., 343 (2019) 521-532.
[37] J. Meriam, L. Kraige, Engineering Mechanics-Dinamics, John Wiley & Sons, New York, 2008.
[38] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71 (1992) 239-250.
[39] C. Thornton, C. Randall, Applications of theoretical contact mechanics to solid particle system simulation, J. Appl. Mech., 20 (1988) 133-142.
[40] D. Zhang, W. Whiten, The calculation of contact forces between particles using spring and damping models, Powder Technol., 88 (1996) 59-64.
[41] C. O′Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput., 21 (2004) 278-303.
[42] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, Int. J. Rock Mech. Min., 41 (2004) 1329-1364.
[43] J. Choi, A. Kudrolli, M.Z. Bazant, Velocity profile of granular flows inside silos and hoppers, J. Phys.: Condens. Matter, 17 (2005) S2533-S2548.
[44] A. Ramírez, J. Nielsen, F. Ayuga, Pressure measurements in steel silos with eccentric hoppers, Powder Technol., 201 (2010) 7-20.
[45] M. Martinez, I. Alfaro, M. Doblare, Simulation of axisymmetric discharging in metallic silos. Analysis of the induced pressure distribution and comparison with different standards, Eng. Struct., 24 (2002) 1561-1574.
[46] Y. Wang, Y. Lu, J.Y. Ooi, Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian–Eulerian formulation, Powder Technol., 257 (2014) 181-190.
[47] C. Campbell, C. Brennen, Chute flows of granular material: some computer simulations, J. Appl. Mech. 52 (1985) 172-178.
[48] J. Wan, F. Wang, G. Yang, S. Zhang, M. Wang, P. Lin, L. Yang, The influence of orifice shape on the flow rate: A DEM and experimental research in 3D hopper granular flows, Powder Technol., 335 (2018) 147-155.
[49] Q. Zheng, B. Xia, R. Pan, A. Yu, Piping flow of cohesive granular materials in silo modelled by finite element method, Granul. Matter, 19 (2017) 2.
[50] S. Masson, J. Martinez, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technol., 109 (2000) 164-178.
[51] S. Liu, Z. Zhou, R. Zou, D. Pinson, A. Yu, Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper, Powder Technol., 253 (2014) 70-79.
[52] Y. Chung, C. Lin, J. Ai, Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression-Part II: Multi-scale exploration of internal physical properties, Chem. Eng. Sci., 144 (2016) 421-443.
[53] J. Gray, M. Wieland, K. Hutter, Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. Lond. A, 455 (1999) 1841-1874.
[54] Y. Tai, J. Gray, K. Hutter, S. Noelle, Flow of dense avalanches past obstructions, Ann. Glaciol., 32 (2001) 281-284.
[55] J. Gray, Y.-C. Tai, S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491 (2003) 161-181.
[56] L.E. Silbert, D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64 (2001) 051302.
[57] T. Faug, Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines, Phys. Rev. E, 92 (2015) 062310.
[58] Y. Chung, C. Wu, C. Kuo, S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model., 74 (2019) 540-568.
[59] T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface, Phys. Fluids, 25 (2013) 070605.
[60] L.S. Fan, Chemical looping systems for fossil energy conversions, John Wiley & Sons, Ltd, 2011
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明