參考文獻 |
第七章 參考文獻
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
2. Tetlow, H., et al., Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014. 542(3): p. 195-295.
3. Hummers, W.S.a.R.E.O., Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1957. 80(6): p. 1339 1339.
4. Su, C.Y., et al., High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011. 5(3): p. 2332-9.
5. Ciesielski, A. and P. Samori, Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev, 2014. 43(1): p. 381-98.
6. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
7. Lee, X.J., et al., Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 2019. 98: p. 163-180.
8. Zou, K. and J. Zhu, Transport in gapped bilayer graphene: The role of potential fluctuations. Physical Review B, 2010. 82(8).
9. Mak, K.F., et al., Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett, 2009. 102(25): p. 256405.
10. Yin, J., et al., Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat Commun, 2016. 7: p. 10699.
11. Kuroda, M.A., et al., Conductance through multilayer graphene films. Nano Lett, 2011. 11(9): p. 3629-33.
12. Shahil, K.M.F. and A.A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications, 2012. 152(15): p. 1331-1340.
13. Todorović, D., et al., Multilayer graphene condenser microphone. 2D Materials, 2015. 2(4).
14. Deng, B., Z. Liu, and H. Peng, Toward Mass Production of CVD Graphene Films. Adv Mater, 2019. 31(9): p. e1800996.
15. Baraton, L., et al., Study of Graphene Growth Mechanism on Nickel Thin Films, in GraphITA 2011. 2012. p. 1-7.
16. Lee, B.-J. and G.-H. Jeong, Comparative study on graphene growth mechanism using Ni films, Ni/Mo sheets, and Pt substrates. Applied Physics A, 2014. 116(1): p. 15-24.
17. Ramon, M.E., et al., CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano, 2011. 5(9): p. 7198-204.
18. Xue, Y., et al., Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011. 4(12): p. 1208-1214.
19. Kalbac, M., O. Frank, and L. Kavan, The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon, 2012. 50(10): p. 3682-3687.
20. Liu, J., et al., Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition. Nanoscale Res Lett, 2015. 10(1): p. 455.
21. Wu, P., et al., Bilayer Graphene Growth via a Penetration Mechanism. The Journal of Physical Chemistry C, 2014. 118(12): p. 6201-6206.
22. Wu, B., et al., Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv Mater, 2011. 23(31): p. 3522-5.
23. Bhaviripudi, S., et al., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 2010. 10(10): p. 4128-33.
24. Zhang, Y.H., et al., Controllable growth of millimeter-size graphene domains on Cufoil. Materials Letters, 2013. 96: p. 149-151.
25. Luo, B., et al., Etching-Controlled Growth of Graphene by Chemical Vapor Deposition. Chemistry of Materials, 2017. 29(3): p. 1022-1027.
26. Xing, S., et al., Kinetic study of graphene growth: Temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters, 2013. 580: p. 62-66.
27. Kim, H., et al., Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 2012. 6(4): p. 3614-23.
28. Choi, D.S., et al., Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Appl Mater Interfaces, 2014. 6(22): p. 19574-8.
29. Seo, J., et al., Study of Cooling Rate on the Growth of Graphene via Chemical Vapor Deposition. Chemistry of Materials, 2017. 29(10): p. 4202-4208.
30. Hedayat, S.M., J. Karimi-Sabet, and M. Shariaty-Niassar, Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures. Applied Surface Science, 2017. 399: p. 542-550.
31. Li, G., S.H. Huang, and Z. Li, Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys Chem Chem Phys, 2015. 17(35): p. 22832-6.
32. Heo, J.H., et al., Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A, 2017. 5(40): p. 21146-21152.
33. Kim, H.H., et al., Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors. Adv Mater, 2014. 26(20): p. 3213-7.
34. Guo, W., et al., Synthesis of nickel nanosheet/graphene composites for biosensor applications. Carbon, 2014. 79: p. 636-645.
35. Kato, R., et al., Strain analysis of plasma CVD graphene for roll-to-roll production by scanning transmission electron microscopy and Raman spectroscopy. Japanese Journal of Applied Physics, 2017. 56(3).
36. Hesjedal, T., Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Applied Physics Letters, 2011. 98(13).
37. Deng, B., et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett, 2015. 15(6): p. 4206-13.
38. Polsen, E.S., et al., High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep, 2015. 5: p. 10257.
39. Zhong, G., et al., Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Applied Physics Letters, 2016. 109(19).
40. Yamada, T., et al., A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon, 2012. 50(7): p. 2615-2619.
41. Yamada, T., M. Ishihara, and M. Hasegawa, Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films, 2013. 532: p. 89-93.
42. Xin, H. and W. Li, A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Applied Physics Reviews, 2018. 5(3).
43. Alrefae, M.A., et al., Process optimization of graphene growth in a roll-to-roll plasma CVD system. AIP Advances, 2017. 7(11).
44. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2).
45. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
46. Hsieh, Y.-P., et al., High-Throughput Graphene Synthesis in Gapless Stacks. Chemistry of Materials, 2015. 28(1): p. 40-43.
47. Wang, H., et al., Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow. Adv Mater, 2016. 28(40): p. 8968-8974.
48. Huet, B., et al., Multi-wafer batch synthesis of graphene on Cu films by quasi-static flow chemical vapor deposition. 2D Materials, 2019. 6(4).
49. Bong, H., et al., Graphene growth under Knudsen molecular flow on a confined catalytic metal coil. Nanoscale, 2015. 7(4): p. 1314-24.
50. 中國科學院重慶綠色智能技術研究院, 重., CN Patent NO. 104477898A. 2014.
51. 中國科學院重慶綠色智能技術研究院, 重., CN Patent NO. 204454598U. 2015.
52. 中國科學院重慶綠色智能技術研究院, 重., CN Patent NO. 104477893U. 2015.
53. Vlassiouk, I., et al., Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013. 54: p. 58-67.
54. Xu, J., et al., Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small, 2017. 13(27).
55. Piner, R., et al., Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano, 2013. 7(9): p. 7495-9.
56. Ryu, J., et al., Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 2014. 8(1): p. 950-6.
57. Nagai, Y., H. Sugime, and S. Noda, 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019. 201: p. 319-324.
58. Strobl and Karlheinz, US Patent NO. 9738973B2. 2017.
59. Fauzi, F.B., et al., The role of gas-phase dynamics in interfacial phenomena during few-layer graphene growth through atmospheric pressure chemical vapour deposition. Phys Chem Chem Phys, 2020. 22(6): p. 3481-3489. |