參考文獻 |
1. Shourangiz-Haghighi, A., Haghnegahdar, M. A., Wang, L., Mussetta, M., Kolios, A. and Lander, M., 2019, "State of the art in the optimisation of wind turbine performance using CFD," Archives of Computational Methods in Engineering, pp. 1-19.
2. Khlaifat, N., Altaee, A., Zhou, J., Huang, Y. and Braytee, A., 2020, "Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia," Energies, 13(9), p. 2292.
3. Du, Z. and Selig, M., 1998, "A 3-D stall-delay model for horizontal axis wind turbine performance prediction," Proc. ASME Wind Energy Symposium, p. 21.
4. Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S. and Larwood, S., 2001, "Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns," National Renewable Energy Lab., Golden, CO.(US).
5. Sørensen, N. N., Michelsen, J. and Schreck, S., 2002, "Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft× 120 ft wind tunnel," Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 5(2‐3), pp. 151-169.
6. Simms, D., Schreck, S., Hand, M. and Fingersh, L. J., 2001, "NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements," National Renewable Energy Lab., Golden, CO (US).
7. Pape, A. L. and Lecanu, J., 2004, "3D Navier–Stokes computations of a stall‐regulated wind turbine," Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 7(4), pp. 309-324.
8. Van Rooij, R. and Arens, E., 2007, "Analysis of the experimental and computational flow characteristics with respect to the augmented lift phenomenon caused by blade rotation," Proc. Journal of Physics: Conference Series, IOP Publishing, p. 012021.
9. Potsdam, M. and Mavriplis, D., 2009, "Unstructured mesh CFD aerodynamic analysis of the NREL Phase VI rotor," Proc. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p. 1221.
10. Sagol, E., Reggio, M. and Ilinca, A., 2012, "Assessment of two-equation turbulence models and validation of the performance characteristics of an experimental wind turbine by CFD," ISRN Mechanical Engineering.
11. Lanzafame, R., Mauro, S. and Messina, M., 2013, "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, 52, pp. 31-39.
12. Zhou, N., Chen, J., Adams, D. E. and Fleeter, S., 2016, "Influence of inflow conditions on turbine loading and wake structures predicted by large eddy simulations using exact geometry," Wind Energy, 19(5), pp. 803-824.
13. Zhong, W., Tang, H., Wang, T. and Zhu, C., 2018, "Accurate RANS Simulation of Wind Turbine Stall by Turbulence Coefficient Calibration," Applied Sciences, 8(9), p. 1444.
14. 劉家源, 2019, "風機葉片氣動力的計算流體力學建模與模擬," 國立中央大學碩士 論文
15. Menter, F., 1993, "Zonal two equation kw turbulence models for aerodynamic flows," Proc. 23rd fluid dynamics, plasmadynamics, and lasers conference, p. 2906.
16. Tu, J., Yeoh, G. H. and Liu, C., 2018, Computational fluid dynamics: a practical approach, Butterworth-Heinemann.
17. ANSYS, 2011, "ANSYS FLUENT user’s guide," Canonsburg, PA.
18. Ramsay, R., Hoffman, M. and Gregorek, G., 1995, "Effects of grit roughness and pitch oscillations on the S809 airfoil," National Renewable Energy Lab., Golden, CO (US).
19. El Khchine, Y. and Sriti, M., 2017, "Boundary Layer and Amplified Grid Effects on Aerodynamic Performances of S809 Airfoil for Horizontal Axis Wind Turbine (HAWT)," J. Eng. Sci. Technol, 12(11), pp. 3011-3022.
20. Menegozzo, L., Dal Monte, A., Benini, E. and Benato, A., 2018, "Small wind turbines: A numerical study for aerodynamic performance assessment under gust conditions," Renewable energy, 121, pp. 123-132.
21. Moshfeghi, M., Song, Y. J. and Xie, Y. H., 2012, "Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine," Journal of Wind Engineering and Industrial Aerodynamics, 107, pp. 94-105.
22. Aksenov, A., Ozturk, U., Yu, C., Byvaltsev, P., Soganci, S. and Tutkun, O., "A validation study using nrel phase VI experiments, Part I: Low computational resource scenario," Proc. 12 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, EUROPEAN TURBOMACHINERY SOCIETY.
23. Chapra, S. C., 2012, Applied numerical methods with MATLAB for engineers and scientists, New York: McGraw-Hill.
24. Jonkman, J. M., 2003, "Modeling of the UAE wind turbine for refinement of FAST_AD," National Renewable Energy Lab., Golden, CO (US).
25. Guntur, S. and Sørensen, N. N., 2014,"An evaluation of several methods of determining the local angle of attack on wind turbine blades," Proc. Journal of Physics: Conference Series, IOP Publishing, p. 012045.
26. Rahimi, H., Schepers, J., Shen, W. Z., García, N. R., Schneider, M., Micallef, D., Ferreira, C. S., Jost, E., Klein, L. and Herráez, I., 2018, "Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions," Renewable Energy, 125, pp. 866-876.
27. Hansen, M. O., 2015, Aerodynamics of wind turbines, Routledge. |