博碩士論文 107323087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.137.220.214
姓名 曾信尹(Sin-Yin Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石墨烯之複合電極於全固態纖維式微型超電容的研究
(Flexible all-solid-state Microsupercapacitors based on Carbon clothes fiber electrode coated with ECG via electrophoretic deposition (EPD))
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究
★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 微型超級電容器(micro-supercapacitors,MSCs)為一種新型電化學儲能元件,因為具有高功率密度、高充放電速率、體積小、使用壽命長、可彎折、綠色環保等特點,被視為現代儲能元件之一大選擇,然而,微型超級電容器現今面臨的最大挑戰為成本高、電解液洩漏、製程複雜等問題,因此如何解決這些問題並保持著高功率為本實驗的一大考驗。
本實驗選擇利用電泳沉積之方法來製備微電容,電極方面選擇使用碳布的纖維,而活性材料方面則是利用電化學剝離石墨烯(electorchemical exfoliation graphene, ECG),此實驗可以製造出全固態(包含電解液)的柔性微電容,該方法顯示了一種簡單、快速且無汙染的製程,應用於生產及組裝具有成本效益且高功率的微型電容器。
本實驗結果顯示此微電容元件具有良好的單位面積電容179.9 mF/cm2,且在彎曲測試時,當彎曲角度達到0°時,電容幾乎無劣化,並且當彎曲角度回復至180°時,電容仍保有高於99%的電容維持率,這歸因於石墨烯電極所提供的高擴散路徑以及促進離子傳輸能力,與此同時,在15000次充放電循環後仍保持高達95%以上的循環穩定性,顯示此元件擁有卓越的操作穩定性以及機械柔韌性。
此外,此微電容元件在能量和功率密度分別為63.96 Wh/cm2以及23485.1 W/cm2。並且,元件的輸出電流與電壓可以利用並聯和串聯數個微電容元件來提升,去達到各種生活應用上的所需效能,也因為其纖維電容之特性,亦可以縫紉於衣物或不同基板材料上,成功演示穿戴式電子元件的展現,最重要的是,這項工作提供了一種具經濟效益的製程來生產高能量與功率密度的固態可撓式微電容,提供未來可穿戴式元件一個新里程碑。
摘要(英) Micro-supercapacitors (MSCs) are a new type of electrochemical energy storage components that have a high power density, high charge/discharge rate, small size, long cycle life, flexible, environmentally friendly, etc. However, the biggest challenges of MSCs is the limitation of high cost, electrolyte leakage, and complicated manufacturing processes. Therefore, this study aim to solve the manufacturing process and maintaining a high power density of MSCs by using the electrophoretic deposition (EPD. Here, we reported an all solid state and flexible MSCs by comprising the electrochemically exfoliated graphene (ECG) as electrode with the solid-state electrolyte through the controllable EPD process on carbon fiber (F-MSCs). This method shows a scalable, rapid, and eco-friendly process to fabricate and assemble F-MSCs with cost-effective and high-power/energy density.
As a result, the F-MCSc exhibit a high area capacitance of 179.9 mF/ cm2, and maintenance performance of capacitance even under the bending test (from 180o to 0o and back to 0o) with the capacity retention higher than 99%. Also, F-MCSc demonstrates a high cycle stability of up to 95% after 15000 cycles, which was attributed to creating a high diffusion path, promoting ion transport capability, and excellent mechanical flexibility. In addition, the energy and power density of F-MSCs are 63.96 Wh / cm2 and 23485.1 W / cm2, respectively. Furthermore, the output current and voltage of the F-MSCs can be further improved by using several micro-capacitor components with parallel and series connections to fulfill the practical demands of various applications. Finally, we demonstrated the as-prepared F-MSCs could be integrated into with clothing or different substrate materials. This work provides a cost-effective process to produce high energy and power density as well as the all solid state and flexible MSCs, which provids a new milestone for wearable components in the future.
關鍵字(中) ★ 石墨烯
★ 微電容
★ 電泳
關鍵字(英)
論文目次 摘要 i
Abstract iiii
總目錄 iv
圖目錄 vi
表目錄
第一章 緒論 1
1-1 前言 1
1-2 電容器介紹 2
第二章 研究背景與文獻回顧 5
2-1 微型超級電容器介紹 5
2-2 微型超級電容器之儲能機制 6
2-2-1 電雙層電容器 6
2-2-2 擬電容器 7
2-2-3 混合電容器 8
2-3製備微型超級電容器之材料分類 10
2-3-1 碳材料(Carbon based material) 10
2-3-2 金屬氧化物(Metal oxide) 10
2-3-3 導電高分子(Conducting polymer) 11
2-4 電解液種類介紹 13
2-5 纖維微電容電極製備方法介紹 14
2-5-1 濕式紡絲 (Wet spinning) 15
2-5-2 浸泡塗佈 (Dip coating) 16
2-5-3 電泳沉積 (Electrophoretic deposition) 17
2-6 研究動機 19
第三章 實驗方法與分析原理 21
3-1 實驗用品與儀器 21
3-1-1 實驗用品 21
3-1-2 實驗儀器 21
3-2 實驗架構 22
3-3 實驗流程 24
3-3-1 電化學剝離石墨烯製備 24
3-3-2 電泳沉積溶液配置 24
3-3-3 電解液製備 25
3-3-4 指叉結構設計 25
3-3-5 微電容置備 26
3-4 材料分析 27
3-4-1 光學顯微鏡 (Optical Microscopes, OM) 27
3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 27
3-4-3 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy,XPS) 27
3-4-4 拉曼光譜分析 (Raman Spectroscopy) 28
3-5 電化學分析 29
3-5-1 循環伏安法分析 (Cyclic Voltammetry,CV) 29
3-5-2 計時電位法分析 (Chronopotentiometry,CP) 29
3-5-3 交流阻抗分析 (Electrochemical Impedance Spectroscopy,EIS) 30
第四章 結果與討論 31
4-1 電泳製備條件的優化 31
4-1-1電泳電壓之優化 31
4-1-2電泳時間之優化 38
4-1-3電泳溶液濃度之優化 43
4-2 不同電解液種類及濃度對微電容的影響 (The influence of electrolyte types and concentrations) 50
4-2-1 循環伏安法分析 50
4-2-2 計時電位法分析 52
4-2-3 交流阻抗分析 53
4-3微電容的整合與應用 (In-plane integration of MSCs device) 55
4-3-1微電容元件的穩定性與耐久度測試 55
4-3-2微電容器之平面整合 57
4-3-3元件應用測試 59
4-4各纖維微型電容器之比較 (Compare with previous works) 61
第五章 結論 65
第六章 未來工作 66
6-1 電解液優化 66
參考文獻 68
參考文獻 [1] Ajay, K.M. and M.N. Dinesh, Influence of various Activated Carbon based Electrode Materials in the Performance of Super Capacitor. IOP Conference Series: Materials Science and Engineering, 2018. 310: p. 012083.
[2] Qi, D., et al., Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges. Advanced Materials, 2017. 29(5): p. 1602802.
[3] Zheng, S., et al., The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. Adv Mater, 2019. 31(50): p. e1900583.
[4] Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 2008. 7: p. 845.
[5] Sun, W. and X.Y. Chen, Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor. Journal of Power Sources, 2009. 193(2): p. 924-929.
[6] Sari, N.P., et al., Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor. Phys Chem Chem Phys, 2017. 19(45): p. 30381-30392.
[7] Liu, L., H. Zhao, and Y. Lei, Advances on three‐dimensional electrodes for micro‐supercapacitors: A mini‐review. InfoMat, 2019. 1(1): p. 74-84.
[8] Zhang, L., W. Viola, and T.L. Andrew, High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics. ACS Appl Mater Interfaces, 2018. 10(43): p. 36834-36840.
[9] Liu, S., et al., Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. J. Mater. Chem. A, 2014. 2(42): p. 18125-18131.
[10] Zhu, Y.G., et al., CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy, 2014. 3: p. 46-54.
[11] Tehrani, F., et al., Laser‐Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics. Advanced Materials Technologies, 2019: p. 1900162.
[12] Yoo, J.J., et al., Ultrathin planar graphene supercapacitors. Nano Lett, 2011. 11(4): p. 1423-7.
[13] Zhao, J., Y. Gao, and A.F. Burke, Performance testing of supercapacitors: Important issues and uncertainties. Journal of Power Sources, 2017. 363: p. 327-340.
[14] Cao, Z. and B. Wei, A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci., 2013. 6(11): p. 3183-3201.
[15] Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
[16] Conway, B.E. and W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry, 2003. 7(9): p. 637-644.
[17] Dong, L., et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019. 7(23): p. 13810-13832.
[18] Shi, H., Activated carbons and double layer capacitance. Electrochimica Acta, 1996. 41(10): p. 1633-1639.
[19] Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
[20] Qu, D., Studies of the activated carbons used in double-layer supercapacitors. Vol. 109. 2002. 403-411.
[21] Gamby, J., et al., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 2001. 101(1): p. 109-116.
[22] Pan, H., J. Li, and Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res Lett, 2010. 5(3): p. 654-68.
[23] Wang, Y., et al., Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology, 2014. 25(9): p. 094010.
[24] Wen, F., et al., Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon, 2014. 75: p. 236-243.
[25] Dong, Y., et al., Selective vacuum filtration-induced microelectrode patterning on paper for high-performance planar microsupercapacitor. Journal of Power Sources, 2018. 396: p. 632-638.
[26] Li, Q., et al., Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2018. 6(29): p. 14112-14119.
[27] Mecklenburg, M., et al., Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv Mater, 2012. 24(26): p. 3486-90.
[28] Peng, Z., et al., Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano, 2015. 9(6): p. 5868-5875.
[29] Niu, Z., et al., All-Solid-State Flexible Ultrathin Micro-Supercapacitors Based on Graphene. Advanced Materials, 2013. 25(29): p. 4035-4042.
[30] Chmiola, J., et al., Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science, 2010. 328(5977): p. 480-483.
[31] Peng, L., et al., Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology, 2018. 29(44): p. 445401.
[32] Band-Hung, T., S.F. Carr, and J.A. Weimer, Ultra-thin TiO2 dielectric film for high capacitance capacitor. 1995. 324: p. 117-122.
[33] Meher, S.K. and G.R. Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications. The Journal of Physical Chemistry C, 2011. 115(31): p. 15646-15654.
[34] Gao, Y., et al., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources, 2010. 195(6): p. 1757-1760.
[35] Wang, Y., et al., Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy, 2018. 49: p. 481-488.
[36] Sun, X., et al., Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. Journal of Materials Chemistry A, 2019. 7(1): p. 372-380.
[37] Liu, C.-C., et al., Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochimica Acta, 2010. 55(20): p. 5768-5774.
[38] Deng, L., et al., RuO2/graphene hybrid material for high performance electrochemical capacitor. Journal of Power Sources, 2014. 248: p. 407-415.
[39] Chen, L.Y., et al., Toward the Theoretical Capacitance of RuO2Reinforced by Highly Conductive Nanoporous Gold. Advanced Energy Materials, 2013. 3(7): p. 851-856.
[40] Nanwani, A., et al., Two-dimensional layered magnesium–cobalt hydroxide crochet structure for high rate and long stable supercapacitor application. npj 2D Materials and Applications, 2019. 3(1).
[41] Cao, L., et al., Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small, 2013. 9(17): p. 2905-10.
[42] Yu, M., et al., Engineering Thin MoS2 Nanosheets on TiN Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst. ACS Energy Letters, 2017. 2(8): p. 1862-1868.
[43] Velmurugan, R., et al., Robust, Flexible, and Binder Free Highly Crystalline V2O5 Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry & Engineering, 2019. 7(15): p. 13115-13126.
[44] Wang, K., et al., Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy & Environmental Science, 2012. 5(8): p. 8384.
[45] Meng, C., et al., Ultrasmall Integrated 3D Micro-Supercapacitors Solve Energy Storage for Miniature Devices. Advanced Energy Materials, 2014. 4(7): p. 1301269.
[46] Wang, F., et al., A High-Energy-Density Asymmetric Microsupercapacitor for Integrated Energy Systems. Advanced Electronic Materials, 2015. 1(4): p. 1400053.
[47] Liu, L., et al., All-Printed Solid-State Microsupercapacitors Derived from Self-Template Synthesis of Ag@PPy Nanocomposites. Advanced Materials Technologies, 2018. 3(1): p. 1700206.
[48] Sun, W. and X. Chen, Fabrication and tests of a novel three dimensional micro supercapacitor. Microelectronic Engineering, 2009. 86(4): p. 1307-1310.
[49] Liu, Y., et al., Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016. 1(9): p. 1600166.
[50] Kurra, N., M.K. Hota, and H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy, 2015. 13: p. 500-508.
[51] Zhang, L.L., R. Zhou, and X.S. Zhao, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010. 20(29): p. 5983.
[52] Sun, K., et al., High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte. RSC Advances, 2016. 6(60): p. 55225-55232.
[53] Chih, J.-K., et al., High energy density of all-screen-printable solid-state microsupercapacitors integrated by graphene/CNTs as hierarchical electrodes. Journal of Materials Chemistry A, 2019. 7(20): p. 12779-12789.
[54] Liu, L., et al., Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat Commun, 2015. 6: p. 7260.
[55] Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539.
[56] Xu, Z. and C. Gao, Graphene fiber: a new trend in carbon fibers. Materials Today, 2015. 18(9): p. 480-492.
[57] Feng, J., et al., Alignment of Ag nanowires on glass sheet by dip-coating technique. Journal of Alloys and Compounds, 2018. 735: p. 607-612.
[58] Zhou, J., et al., Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Science China Materials, 2018. 61(2): p. 243-253.
[59] Purkait, T., et al., High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep, 2018. 8(1): p. 640.
[60] Atiq Ur Rehman, M., et al., Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: A design of experiments (DoE) study. Materials & Design, 2017. 130: p. 223-230.
[61] Chen, C.-H., et al., Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale, 2015. 7(37): p. 15362-15373.
[62] Jost, K., et al., Natural Fiber Welded Electrode Yarns for Knittable Textile Supercapacitors. Advanced Energy Materials, 2015. 5(4): p. 1401286.
[63] Chen, Q., et al., Effect of different gel electrolytes on graphene-based solid-state supercapacitors. RSC Advances, 2014. 4(68): p. 36253-36256.
[64] Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
[65] Hofmann, S., Auger-and X-ray photoelectron spectroscopy in materials science: a user-oriented guide. Vol. 49. 2012: Springer Science & Business Media.
[66] Kou, L., et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014. 5: p. 3754.
[67] Yang, Z., et al., A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed Engl, 2013. 52(50): p. 13453-7.
[68] Qu, G., et al., A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. Adv Mater, 2016. 28(19): p. 3646-52.
[69] Meng, Y., et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 2013. 25(16): p. 2326-31.
[70] Shahrokhian, S., L. Naderi, and R. Mohammadi, High-Performance Fiber-Shaped Flexible Asymmetric Microsupercapacitor Based on Ni(OH)2 Nanoparticles-Decorated Porous Dendritic Ni–Cu Film/Cu Wire and Reduced Graphene Oxide/Carbon Fiber Electrodes. ACS Sustainable Chemistry & Engineering, 2018. 6(11): p. 14574-14588.
[71] Yin, Q., et al., CoNi-layered double hydroxide array on graphene-based fiber as a new electrode material for microsupercapacitor. Applied Surface Science, 2019. 487: p. 1-8.
[72] Choi, C., et al., Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Advances, 2018. 8(24): p. 13112-13120.
[73] Li, Z., et al., Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nature Energy, 2020. 5(2): p. 160-168.
指導教授 蘇清源 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明