參考文獻 |
[1] Ajay, K.M. and M.N. Dinesh, Influence of various Activated Carbon based Electrode Materials in the Performance of Super Capacitor. IOP Conference Series: Materials Science and Engineering, 2018. 310: p. 012083.
[2] Qi, D., et al., Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges. Advanced Materials, 2017. 29(5): p. 1602802.
[3] Zheng, S., et al., The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. Adv Mater, 2019. 31(50): p. e1900583.
[4] Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 2008. 7: p. 845.
[5] Sun, W. and X.Y. Chen, Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor. Journal of Power Sources, 2009. 193(2): p. 924-929.
[6] Sari, N.P., et al., Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor. Phys Chem Chem Phys, 2017. 19(45): p. 30381-30392.
[7] Liu, L., H. Zhao, and Y. Lei, Advances on three‐dimensional electrodes for micro‐supercapacitors: A mini‐review. InfoMat, 2019. 1(1): p. 74-84.
[8] Zhang, L., W. Viola, and T.L. Andrew, High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics. ACS Appl Mater Interfaces, 2018. 10(43): p. 36834-36840.
[9] Liu, S., et al., Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. J. Mater. Chem. A, 2014. 2(42): p. 18125-18131.
[10] Zhu, Y.G., et al., CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy, 2014. 3: p. 46-54.
[11] Tehrani, F., et al., Laser‐Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics. Advanced Materials Technologies, 2019: p. 1900162.
[12] Yoo, J.J., et al., Ultrathin planar graphene supercapacitors. Nano Lett, 2011. 11(4): p. 1423-7.
[13] Zhao, J., Y. Gao, and A.F. Burke, Performance testing of supercapacitors: Important issues and uncertainties. Journal of Power Sources, 2017. 363: p. 327-340.
[14] Cao, Z. and B. Wei, A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci., 2013. 6(11): p. 3183-3201.
[15] Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
[16] Conway, B.E. and W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry, 2003. 7(9): p. 637-644.
[17] Dong, L., et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019. 7(23): p. 13810-13832.
[18] Shi, H., Activated carbons and double layer capacitance. Electrochimica Acta, 1996. 41(10): p. 1633-1639.
[19] Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
[20] Qu, D., Studies of the activated carbons used in double-layer supercapacitors. Vol. 109. 2002. 403-411.
[21] Gamby, J., et al., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 2001. 101(1): p. 109-116.
[22] Pan, H., J. Li, and Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res Lett, 2010. 5(3): p. 654-68.
[23] Wang, Y., et al., Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology, 2014. 25(9): p. 094010.
[24] Wen, F., et al., Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon, 2014. 75: p. 236-243.
[25] Dong, Y., et al., Selective vacuum filtration-induced microelectrode patterning on paper for high-performance planar microsupercapacitor. Journal of Power Sources, 2018. 396: p. 632-638.
[26] Li, Q., et al., Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2018. 6(29): p. 14112-14119.
[27] Mecklenburg, M., et al., Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv Mater, 2012. 24(26): p. 3486-90.
[28] Peng, Z., et al., Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano, 2015. 9(6): p. 5868-5875.
[29] Niu, Z., et al., All-Solid-State Flexible Ultrathin Micro-Supercapacitors Based on Graphene. Advanced Materials, 2013. 25(29): p. 4035-4042.
[30] Chmiola, J., et al., Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science, 2010. 328(5977): p. 480-483.
[31] Peng, L., et al., Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology, 2018. 29(44): p. 445401.
[32] Band-Hung, T., S.F. Carr, and J.A. Weimer, Ultra-thin TiO2 dielectric film for high capacitance capacitor. 1995. 324: p. 117-122.
[33] Meher, S.K. and G.R. Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications. The Journal of Physical Chemistry C, 2011. 115(31): p. 15646-15654.
[34] Gao, Y., et al., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources, 2010. 195(6): p. 1757-1760.
[35] Wang, Y., et al., Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy, 2018. 49: p. 481-488.
[36] Sun, X., et al., Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. Journal of Materials Chemistry A, 2019. 7(1): p. 372-380.
[37] Liu, C.-C., et al., Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochimica Acta, 2010. 55(20): p. 5768-5774.
[38] Deng, L., et al., RuO2/graphene hybrid material for high performance electrochemical capacitor. Journal of Power Sources, 2014. 248: p. 407-415.
[39] Chen, L.Y., et al., Toward the Theoretical Capacitance of RuO2Reinforced by Highly Conductive Nanoporous Gold. Advanced Energy Materials, 2013. 3(7): p. 851-856.
[40] Nanwani, A., et al., Two-dimensional layered magnesium–cobalt hydroxide crochet structure for high rate and long stable supercapacitor application. npj 2D Materials and Applications, 2019. 3(1).
[41] Cao, L., et al., Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small, 2013. 9(17): p. 2905-10.
[42] Yu, M., et al., Engineering Thin MoS2 Nanosheets on TiN Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst. ACS Energy Letters, 2017. 2(8): p. 1862-1868.
[43] Velmurugan, R., et al., Robust, Flexible, and Binder Free Highly Crystalline V2O5 Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry & Engineering, 2019. 7(15): p. 13115-13126.
[44] Wang, K., et al., Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy & Environmental Science, 2012. 5(8): p. 8384.
[45] Meng, C., et al., Ultrasmall Integrated 3D Micro-Supercapacitors Solve Energy Storage for Miniature Devices. Advanced Energy Materials, 2014. 4(7): p. 1301269.
[46] Wang, F., et al., A High-Energy-Density Asymmetric Microsupercapacitor for Integrated Energy Systems. Advanced Electronic Materials, 2015. 1(4): p. 1400053.
[47] Liu, L., et al., All-Printed Solid-State Microsupercapacitors Derived from Self-Template Synthesis of Ag@PPy Nanocomposites. Advanced Materials Technologies, 2018. 3(1): p. 1700206.
[48] Sun, W. and X. Chen, Fabrication and tests of a novel three dimensional micro supercapacitor. Microelectronic Engineering, 2009. 86(4): p. 1307-1310.
[49] Liu, Y., et al., Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016. 1(9): p. 1600166.
[50] Kurra, N., M.K. Hota, and H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy, 2015. 13: p. 500-508.
[51] Zhang, L.L., R. Zhou, and X.S. Zhao, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010. 20(29): p. 5983.
[52] Sun, K., et al., High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte. RSC Advances, 2016. 6(60): p. 55225-55232.
[53] Chih, J.-K., et al., High energy density of all-screen-printable solid-state microsupercapacitors integrated by graphene/CNTs as hierarchical electrodes. Journal of Materials Chemistry A, 2019. 7(20): p. 12779-12789.
[54] Liu, L., et al., Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat Commun, 2015. 6: p. 7260.
[55] Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539.
[56] Xu, Z. and C. Gao, Graphene fiber: a new trend in carbon fibers. Materials Today, 2015. 18(9): p. 480-492.
[57] Feng, J., et al., Alignment of Ag nanowires on glass sheet by dip-coating technique. Journal of Alloys and Compounds, 2018. 735: p. 607-612.
[58] Zhou, J., et al., Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Science China Materials, 2018. 61(2): p. 243-253.
[59] Purkait, T., et al., High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep, 2018. 8(1): p. 640.
[60] Atiq Ur Rehman, M., et al., Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: A design of experiments (DoE) study. Materials & Design, 2017. 130: p. 223-230.
[61] Chen, C.-H., et al., Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale, 2015. 7(37): p. 15362-15373.
[62] Jost, K., et al., Natural Fiber Welded Electrode Yarns for Knittable Textile Supercapacitors. Advanced Energy Materials, 2015. 5(4): p. 1401286.
[63] Chen, Q., et al., Effect of different gel electrolytes on graphene-based solid-state supercapacitors. RSC Advances, 2014. 4(68): p. 36253-36256.
[64] Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
[65] Hofmann, S., Auger-and X-ray photoelectron spectroscopy in materials science: a user-oriented guide. Vol. 49. 2012: Springer Science & Business Media.
[66] Kou, L., et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014. 5: p. 3754.
[67] Yang, Z., et al., A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed Engl, 2013. 52(50): p. 13453-7.
[68] Qu, G., et al., A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. Adv Mater, 2016. 28(19): p. 3646-52.
[69] Meng, Y., et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 2013. 25(16): p. 2326-31.
[70] Shahrokhian, S., L. Naderi, and R. Mohammadi, High-Performance Fiber-Shaped Flexible Asymmetric Microsupercapacitor Based on Ni(OH)2 Nanoparticles-Decorated Porous Dendritic Ni–Cu Film/Cu Wire and Reduced Graphene Oxide/Carbon Fiber Electrodes. ACS Sustainable Chemistry & Engineering, 2018. 6(11): p. 14574-14588.
[71] Yin, Q., et al., CoNi-layered double hydroxide array on graphene-based fiber as a new electrode material for microsupercapacitor. Applied Surface Science, 2019. 487: p. 1-8.
[72] Choi, C., et al., Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Advances, 2018. 8(24): p. 13112-13120.
[73] Li, Z., et al., Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nature Energy, 2020. 5(2): p. 160-168. |