參考文獻 |
[1] United Network for Organ Sharing:Transplant trends, Available at: https://unos.org/data/transplant-trends/.
[2] N. Cubo, M. Garcia, J. F. Cañizo, D. Velasco and J. L. Jorcano, “3D Bioprinting of Functional Human Skin Production and in Vivo Analysis”, Biofabrication, Vol. 9, 015006, 2016.
[3] J. H. Shim, J.Y. Kim, M. Park, J. Park and D. W. Cho, “Development of A Hybrid Scaffold with Synthetic Biomaterials and Hydrogel Using Solid Freeform Fabrication Technology”,Biofabrication, Vol. 3, 034102, 2011.
[4] F. Urciuolo, C. Casale, G. Imparato and P. A. Netti, “Bioengineered Skin Substitutes_the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds”, Journal of Clinical Medicine, Vol. 8, 2083, 2019.
[5] M. A. Skylar-Scott, J. Mueller, C. W. Visser, J. A. Lewis, “Voxelated Soft Matter Via Multimaterial Multinozzle 3D Printing”, Natural, Vol. 575, pp. 330-335, 2019.
[6] F. Liravi, E. Toyserkani, “A Hybrid Additive Manufacturing Method for The Fabrication of Silicone Bio-Structures: 3D Printing Optimization and Surface Characterization”, Materials and Design, Vol. 138, pp. 46-61, 2018.
[7] P. Gangatirkar, P. F. Sophie, A. Li, R. Rossi and P. Kaur, “Establishment of 3D Organotypic Cultures Using Human Neonatal Epidermal Cells”, Nature Protocols, Vol. 2, pp. 178-186, 2007.
[8] B. S. Kim, J. S. Lee, G. Gao and D. W. Cho, “Direct 3D Cell-Printing of Human Skin with Functional Transwell System”, Biofabrication, Vol. 9, 025034, 2017.
[9] M. Y. Yeh, J. Y. Zhao, Y. R. Hsieh, J. H. Lin, F. Y. Chen, R. D. Chakravarthy, P. C. Chung, H. C. Lin and S. C. Hung, “Reverse Thermo-Responsive Hydrogels Prepared from Pluronic F127 and Gelatin Composite Materials”, RSC Advance, Vol. 7, pp. 21252-21257, 2017.
[10] I. T. Ozbolat, H. Chen and Y. Yu, “Development of ‘Multi-Arm Bioprinter’ for Hybrid Biofabrication of Tissue Engineering Constructs”, Robotics and Computer-Integrated Manufacturing, Vol. 30, pp. 295-304, 2014.
[11] K. K. Moncal, V. Ozbolat, P. Datta, D. N. Heo and I. T. Ozbolat, “Thermally-Controlled Extrusion-Based Bioprinting of Collagen”, Journal of Materials Science-Materials in Medicine, Vol. 30, 55, 2019.
[12] J. H. Shim, J. S. Lee, J. Y. Kim and D. W. Cho, “Bioprinting of A Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using A Multi-Head Tissue/Organ Building System”, Journal of Micromechanics and Microengineering, Vol. 22, 085014, 2012.
[13] D. Choudhury, S. Anand and M. W. Naing, “The Arrival of Commercial Bioprinters - Towards 3D Bioprinting Revolution!”, International Journal of Bioprinting, Vol. 4, 2018.
[14] CELLINK:System / Bioprinting / Bio 〖X6〗^TM, Available at: https://www.cellink.com/global/bioprinting/bio-x6/
[15] EnvisionTEC:3D Bioplotter Manufacturer Series Technical Data, Available at:https://envisiontec.com/3d-printers/3d-bioplotter/manufacturer-series/#
[16] RegenHU Biosystem Architects:3DDiscovery™ Evolution, Available at:https://www.regenhu.com/3d-bioprinters#3ddiscovery-evolution
[17] Regemat:BIO V1 Technology, Available at:https://www.regemat3d.com/en/technologies
[18] Aether:Aether1 specifications, Available at:https://discoveraether.com/
[19] Y. Du, J. L. Guo, J. Wang, A. G. Mikos and S. Zhang, “Hierarchically Designed Bone Scaffolds: From Internal Cues to External Stimuli”, Biomaterials, Vol. 218, 119334, 2019.
[20] S. Pina, V. P. Ribeiro, C. F. Marques, F. R. Maia, T. H. Silva, R. L. Reis and J. M. Oliveira, “Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications”, Materials, Vol. 12, 1824, 2019.
[21] A. Eltom, G. Zhong and A. Muhammad, “Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review”, Advances in Materials Science and Engineering, Vol. 2019, 3429527, 2019.
[22] A. Alghuwainem, A. T. Alshareeda and B. Alsowayan, “Scaffold-Free 3-D Cell Sheet Technique Bridges the Gap between 2-D Cell Culture and Animal Models”, International Journal of Molecular Sciences, Vol. 20, 4926, 2019.
[23] Q. L. Loh and C. Choong, “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B-Reviews, Vol. 19, pp. 485-502, 2012.
[24] M. Mabrouk, H. H. Beherei and D. B. Das, “Recent Progress in The Fabrication Techniques of 3D Scaffolds for Tissue Engineering”, Materials Science & Engineering C-Materials for Biological Applications, Vol. 110, 110716, 2020.
[25] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf and M. Spitzbart, “Photopolymers with Tunable Mechanical Properties Processed by Laser-Based High-Resolution Stereolithography”, Journal of Micromechanics and Microengineering, Vol. 18, 125014, 2008.
[26] S. M. Bittner, J. L. Guo, A. Melchiorri and A. G. Mikos, “Three-Dimensional Printing of Multilayered Tissue Engineering Scaffolds”, Materials Today, Vol. 21, pp. 861-874, 2018.
[27] S. H. Park, D. Y. Yang and K. S. Lee, “Two-Photon Stereolithography for Realizing Ultraprecise Three-Dimensional Nano/Microdevices”, Laser & Photonics Reviews, Vol. 3, pp. 1-11, 2009.
[28] A. Selimis, V. Mironov and M. Farsari, “Direct Laser Writing: Principles and Materials for Scaffold 3D Printing”, Microelectronic Engineering, Vol. 132, pp. 83-89, 2014.
[29] X. Wang, Z. Wei, C. Z. Baysah, M. Zheng and J. Xing, “Biomaterial-Based Microstructures Fabricated by Two-Photon Polymerization Microfabrication Technology”, RSC Advance, Vol. 9, pp. 34472-34480, 2019.
[30] D. T. Pham, S. Dimov and F. Lacan, “Selective Laser Sintering: Applications and Technological Capabilities”, Manufacture, Vol. 213, pp. 435-449, 1999.
[31] F. E. Wiria, K. F. Leong, C. K. Chua and Y. Liu, “Poly-Epsilon-Caprolactone/Hydroxyapatite for Tissue Engineering Scaffold Fabrication Via Selective Laser Sintering”, Acta Biomaterialia, Vol. 3, pp. 1-12, 2007.
[32] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp. 1169-1185, 2002.
[33] T. N. A. T. Rahim, A. M. Abdullah and H. M. Akil, “Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites”, Polymer Reviews, Vol. 59, pp. 589-624, 2019.
[34] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering Via Low-Temperature Deposition”, Scripta Materialia, Vol. 46, pp. 771-776, 2002.
[35] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multinozzle Low-Temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research Part B-Applied Biomaterials, Vol. 88, pp. 254-263, 2009.
[36] L. T. Ozbolat, “3D Bioprinting Fundamentals, Principles and Applications”, 2016.
[37] G. Gao, B. S. Kim, J. Jang and D. W. Cho, “Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication”, Acs Biomaterials Science & Engineering, Vol. 5, pp. 1150-1169, 2019.
[38] S. B. Bammesberger, S. Kartmann, L. Yanguy, D. Liang, K. Mutschler, A. Ernst, R. Zengerle and P. Koltay, “A Low-Cost, Normally Closed, Solenoid Valve for Non-Contact Dispensing in the Sub-μL Range”, Micronachines, Vol. 4, pp. 9-21, 2013.
[39] H. Gudupati, M. Dey and I. Ozbolat, “A Comprehensive Review on Droplet-based Bioprinting: Past, Present and Future”, Biomaterials, Vol. 102, pp. 20-42, 2016.
[40] U. Demirci, “Acoustic Picoliter Droplets for Emerging Applications in Semiconductor Industry and Biotechnology”, Journal of Microelectromechanical Systems, Vol. 15, pp. 957-966, 2006.
[41] U. Demirci and G. Montesano, “Single Cell Epitaxy by Acoustic Picolitre Droplets”, Lab on a Chip, Vol. 7, pp. 1139-1145, 2007.
[42] C. B. Arnold, P. Serra and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials”, MRS Bulletin, Vol. 32, pp. 23-31, 2007.
[43] C. Mandrycky, Z. Wang, K. Kim and D. H. Kim, “3D Bioprinting for Engineering Complex Tissues”, Biotechnology Advances, Vol. 34, pp. 422-434, 2016.
[44] I. Donderwinkel, J. C. M. V. Hest and N. R. Cameron, “Bio-Inks for 3D Bioprinting: Recent Advances and Future Prospects”, Polymer Chemistry, Vol. 8, pp. 4451-4471, 2017.
[45] S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong and M. Xing, “3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances”, Bioactive Materials, Vol. 3, pp. 144-156, 2018.
[46] D. Williams, P. Thayer, H. Martinez, E. Gatenholm and A. Khademhosseini, “A Perspective on The Physical, Mechanical and Biological Specifications of Bioinks and The Development of Functional Tissues in 3D Bioprinting”, Bioprinting, Vol. 9, pp. 19-36, 2018.
[47] M. Hospodiuk, M. Dey, D. Sosnoski and I. T. Ozbolat, “The Bioink: A Comprehensive Review on Bioprintable Materials”, Biotechnology Advances, Vol. 35, pp. 217-239, 2017.
[48] I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton and C. T. Laurencin, “Progress in 3D Bioprinting Technology for Tissue/Organ Regenerative Engineering”, Biomaterials, Vol. 226, 119536, 2020.
[49] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央大學,碩士論文,民國107年。
[50] ATOM 3D Printer : ATOM support , Available at : https://atom3dp.squarespace.com/autoleveling-tw
[51] M. D. Guerra and R. T. Coelho, “Development of A Low Cost Touch Trigger Probe for CNC Lathes”, Journal of Materials Processing Technology, Vol. 179, pp. 117-123, 2006.
[52] L. S. Yap and M. C. Yang, “Evaluation of Hydrogel Composing of Pluronic F127 and Carboxymethyl Hexanoyl Chitosan as Injectable Scaffold for Tissue Engineering Applications”, Colloids and Surfaces B: Biointerfaces, Vol. 146, pp. 204-211, 2016. |