參考文獻 |
[1]Wang, J., et al., “A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass”. The International Journal of Advanced Manufacturing Technology, 2015. Vol.83(1-4), pp. 347-355.
[2]Kuo, K.-l. and C.-c. Tsao, “Rotary ultrasonic-assisted milling of brittle materials”. Transactions of Nonferrous Metals Society of China, 2012. Vol.22, pp. 793-800.
[3]楊忠義, 許富銓, 蕭美枝, 李正雄, 「超音波振動輔助加工於玻璃材料加工研究」, 工程科技與教育學刊, 2010.
[4]解文法, 精密研磨加工技術概說, 松露文化, 1980.
[5]Kalpakjian, and Schmid, Manufacturing engineering and technology., 7/E, Pearson, 2014.
[6]Marks, M.R., Hassan, Z. and Cheong, K.Y. “Characterization Methods for Ultrathin Wafer and Die Quality: A Review”. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014. Vol.4(12), pp. 2042-2057.
[7] Lawn, B. R., & Swain, M. V., “Microfracture beneath point indentations in brittle solids”. Journal of materials science, 1975. Vol.10(1), pp. 113-122.
[8]Toshiro Doi, Eckart Uhlmann, and Ioan D. Marinescu, Handbook of Ceramics Grinding and Polishing., 7th, William Andrew, 2014.
[9]Malkin, S., and Cook, N. H., “The wear of grinding wheels: part 1-attritious wear”, 1971., pp. 1120-1128.
[10]Lal, G. K., & Shaw, M. C., “On the attritious wear of abrasive grains”. Wear, 1973. Vol.25(2), pp. 255-269.
[11]Puerto, P., et al., “Evolution of Surface Roughness in Grinding and its Relationship with the Dressing Parameters and the Radial Wear”. Procedia Engineering, 2013. Vol.63, pp. 174-182.
[12]Wang, H., et al., “Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables”. Advances in Mechanical Engineering, 2016. Vol.8(9), pp. 1-14.
[13]Bridgman, P.W. and Šimon, I. “Effects of Very High Pressures on Glass”. Journal of Applied Physics, 1953. Vol.24(4), pp. 405-413.
[14]Sajjadi, M., Malekian, M., Park, S. S., & Jun, M. B., “Investigation of micro scratching and machining of glass”. International Manufacturing Science and Engineering Conference, 2009. Vol.43628, pp. 401-408.
[15]Liu, K., et al., “A study of the cutting modes in the grooving of tungsten carbide”. The International Journal of Advanced Manufacturing Technology, 2004. Vol.24(5-6), pp. 321-326.
[16]蔡建南, 「玻璃螢幕面板高轉速加工之研究」, 逢甲大學材料與製造工程所, 碩士論文, 2009.
[17]Peng, Y., et al., “An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration”. The International Journal of Advanced Manufacturing Technology, 2010. Vol.54(9-12), pp. 941-947.
[18]Arif, M., Rahman, M. and Yoke San, W. “Analytical model to determine the critical feed per edge for ductile-brittle transition in milling process of brittle materials”. International Journal of Machine Tools and Manufacture, 2011. Vol.51(3), pp. 170-181.
[19]Gu, W., Yao, Z. and Li, H. “Investigation of grinding modes in horizontal surface grinding of optical glass BK7”. Journal of Materials Processing Technology, 2011. Vol.211(10), pp. 1629-1636.
[20]Arif, M., M. Rahman, and W.Y. San, “Ultraprecision ductile mode machining of glass by micro milling process”. Journal of Manufacturing Processes, 2011. Vol.13(1), pp. 50-59.
[21]Zhang, C., et al., “Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: A feasibility study”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013. Vol.228(4), pp. 504-514.
[22]Lv, D., et al., “Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7”. Precision Engineering, 2013. Vol.37(4), pp. 839-848.
[23]Wang, Y., et al., “Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing”. International Journal of Machine Tools and Manufacture, 2014. Vol.77, pp. 66-73.
[24]Jianhua, Z., et al., “Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass”. Shock and Vibration, 2014. Vol.2014, pp. 1-10.
[25]Jiang, C., Wang, C. and Li, H. “Experimental investigation of brittle material removal fraction on an optical glass surface during ultrasound-assisted grinding”. The International Journal of Advanced Manufacturing Technology, 2015. Vol.86(1-4), pp. 419-426.
[26]Singh, R.P. and Singhal, S. “Rotary Ultrasonic Machining: A Review”. Materials and Manufacturing Processes, 2016. Vol.31(14), pp. 1795-1824.
[27]Li, C., et al., “Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics”. Ceramics International, 2017. Vol.43(3), pp. 2981-2993.
[28]Hu, Y., Wang, H., Ning, F., Cong, W., & Li, Y., “Surface grinding of optical BK7/K9 glass using rotary ultrasonic machining: an experimental study”. International Manufacturing Science and Engineering Conference, 2017. Vol.50725, pp. V001T02A014.
[29]Song, X.-F., et al., “Ultrasonic assisted high rotational speed diamond machining of dental glass ceramics”. The International Journal of Advanced Manufacturing Technology, 2018. Vol.96(1-4), pp. 387-399.
[30]Dai, J., et al., “Finite element implementation of the tension-shear coupled fracture criterion for numerical simulations of brittle-ductile transition in silicon carbide ceramic grinding”. International Journal of Mechanical Sciences, 2018. Vol.146, pp. 211-220.
[31]Choong, Z.J., et al., “Micro-machinability and edge chipping mechanism studies on diamond micro-milling of monocrystalline silicon”. Journal of Manufacturing Processes, 2019. Vol.38, pp. 93-103.
[32]Baraheni, M. and Amini, S. “Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding”. Ceramics International, 2019. Vol.45(8), pp. 10086-10096.
[33]Abdo, B.M.A., Anwar, S. and El-Tamimi, A. “Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining”. Journal of Manufacturing Processes, 2019. Vol.43, pp. 175-191.
[34]蔡明義, 林岳峰, 張嘉泰, 楊家豪, 「超音波振動輔助難削材加工之研究」, 機械新刊, 2019. |