博碩士論文 108323610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.145.170.2
姓名 那朗(Nanang Setiawan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Synthesis and Investigation of Ni-Cu anode for Intermediate Temperature Proton Conducting Solid Oxide Fuel Cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 在本研究中,將利用固相反應法(Solid State Reaction, SSR)所製備的傳統和合金陽極用於質子傳導型固態氧化物燃料電池(Proton Conducting Solid Oxide Fuel Cell, P-SOFC)。本研究的目的是與傳統的Ni陽極相比,為P-SOFC開發更好的抗碳性陽極。將Cu摻雜到Ni-BCZY陽極中可以提高P-SOFC中陽極的抗碳沉積能力。合金(Ni:Cu)之比和煆燒參數(例如時間和溫度)的幾種變化將會影響催化劑的抗碳沉積能力和電導率。首先我們研究了合適煆燒的操作時間和溫度,然後改變了Ni:Cu的比例。研究結果顯示,煅燒時間和煅燒溫度的變化可以改變粒徑、電導率和熱膨脹係數(Coefficient of Thermal Expansion, CTE)。當莫爾比為95:5(Ni:Cu)時,NiCu陽極在800°C下煅燒0.5小時,在600°C的工作溫度下具有2140 S / cm的電導率,其CTE為16.07×10-6 K-1 。儘管NiCu的電導率低於傳統的Ni陽極(2241 S / cm),但它顯示出優異的抗碳沉積性能,此外,對於Ni:Cu莫爾比為7:3觀察到最佳的抗碳沉積性能。
摘要(英) In this research, solid-state reaction (SSR) synthesis process is used to prepare alloy catalyst as an anode in proton conducting solid oxide fuel cell (P-SOFC). The aim of this research is to develop a better carbon resistance anode for P-SOFC, when compared to conventional Ni anode. Doping copper into Ni-BCZY anode can enhanced the carbon resistance of anode in P-SOFC. Several variations in the ratio of alloy (Ni : Cu) and calcining parameters such as time and temperature would affect the carbon deposition resistance and electrical conductivity of the catalyst. Initially, we investigated the best appropriate calcination duration and temperature, and then the ratio of Ni : Cu is varied. The results show that the variation of calcined time and calcined temperature can change the particle size, electrical conductivity and coefficient of thermal expansion (CTE). NiCu anode with molar ratio of 95 : 5 (Ni : Cu) calcined at 800 °C for 0.5h exhibit an electrical conductivity of 2140 S/cm at operating temperature of 600 °C with a CTE of 16.07 × 10-6 K-1. Although the NiCu have a lower electrical conductivity than the traditional Ni anode (2241 S/cm), it shows a good performance of carbon deposition resistance, the best carbon deposition resistance observed for the Ni : Cu molar ratio of 7 : 3. This work can help to replace the conventional Ni anode in P-SOFC.
關鍵字(中) ★ 質子傳導
★ 中溫型
★ 固態氧化物燃燒電池
★ 合金
★ 碳沉積
關鍵字(英) ★ Proton Conducting
★ Intermediate Temperature
★ Solid Oxide Fuel Cell
★ Alloy
★ Carbon Deposition
論文目次 摘要 i
Abstract ii
Table of Contents iii
Acknowledgements v
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Solid Oxide Fuel Cell 2
1.3 O-SOFC and P-SOFC 4
1.4 P-SOFC Basic Principle 7
1.5 Material Selection for PSOFC 8
1.6 P-SOFC Electrolyte 9
1.7 Intermediate Temperature Solid Oxide Fuel Cell anode 13
1.8 P-SOFC Cathode 17
1.9 Objectives 18
Chapter 2 Literature review 19
2.1 Effect of Changing the Ratio of NiCu Alloy on the Properties of SOFC Anode Materials 19
2.2 Effect of Changing Calcination Temperature on Anode Material 19
2.3 Effect of Changing Calcination Time on Anode Material 22
2.4 Effect of methane gas on carbon deposition of SOFC anode materials 23
Chapter 3 Experimental Section 26
3.1 Experimental Procedure 26
3.1.1 Ni1-xCux-BaCe0.6Zr0.2Y0.2O3-δ powder preparation 26
3.2 Anode material precursor specifications 28
3.3 Laboratory Equipment 28
3.3.1 X-ray diffraction analyzer (X ray Diffraction, XRD) 28
3.3.2 Scanning Electron Microscopy, SEM 30
3.3.3 Thermal Mechanical Analyzer, TMA 31
3.3.4 Conductivity Resistance Measurement 32
3.3.5 Vickers Hardness Testing Machine 34
3.3.6 Raman Spectrometer 34
3.3.7 Elemental Analysis 36
Chapter 4 Result and Discussion 38
4.1 The Effect of different Calcination Time 38
4.1.1 Sample with different calcine time 38
4.1.2 Effects of different calcine time on the morphology and conductivity of NiCu anode materials 39
4.2 The Effect of different Calcination Temperature 43
4.2.1 Sample with different calcine temperature 43
4.2.2 Effects of different calcine temperatures on the morphology and conductivity of NiCu anode materials 43
4.3 The Effect of different NiCu Ratio 48
4.3.1 Sample with different NiCu Ratio 48
4.3.2 Effects of different NiCu Ratio on the morphology and conductivity of NiCu anode materials 48
4.4 Carbon deposition on NiCu anode with different alloy ratio 55
Chapter 5 Conclusions 60
References 62
參考文獻 [1] Larminie, J., and Dicks, A., Fuel Cell Systems Explained: Second Edition, 2013.
[2] Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel Cells - Fundamentals and Applications,” Fuel Cells, Vol. 1(1), pp. 5–39, 2001.
[3] Mekhilef, S., Saidur, R., and Safari, A., “Comparative Study of Different Fuel Cell Technologies,” Renew. Sustain. Energy Rev., Vol. 16(1), pp. 981–989, 2012.
[4] Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., and Wu, G., “Current Progress of Pt and Pt-Based Electrocatalysts Used for Fuel Cells,” Sustain. Energy Fuels, Vol. 4(1), pp. 15–30, 2019.
[5] Benyoucef, A., Klein, D., Coddet, C., and Benyoucef, B., “Development and Characterisation of (Ni, Cu, Co)-YSZ and Cu-Co-YSZ Cermets Anode Materials for SOFC Application,” Surf. Coatings Technol., Vol. 202(10), pp. 2202–2207, 2008.
[6] Meng, Y., Gao, J., Zhao, Z., Amoroso, J., Tong, J., and Brinkman, K. S., “Review: Recent Progress in Low-Temperature Proton-Conducting Ceramics,” J. Mater. Sci., Vol. 54(13), pp. 9291–9312, 2019.
[7] Fabbri, E., Pergolesi, D., and Traversa, E., “Materials Challenges toward Proton-Conducting Oxide Fuel Cells: A Critical Review,” Chem. Soc. Rev., Vol. 39(11), pp. 4355–4369, 2010.
[8] Lee, K. R., Tseng, C. J., Jang, S. C., Lin, J. C., Wang, K. W., Chang, J. K., Chen, T. C., and Lee, S. W., “Fabrication of Anode-Supported Thin BCZY Electrolyte Protonic Fuel Cells Using NiO Sintering Aid,” Int. J. Hydrogen Energy, Vol. 44(42), pp. 23784–23792, 2019.
[9] Primdahl Søren, Nickel/Yttria-Stabilised Zirconia Cermet Anodes for Solid Oxide Fuel Cells, 1999.
[10] Stambouli, A. B., and Traversa, E., “Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy,” Renew. Sustain. Energy Rev., Vol. 6(5), pp. 433–455, 2002.
[11] Ishihara, T., Sammes, N. M., and Yamamoto, O., “Electrolytes,” High-temperature Solid Oxide Fuel Cells Fundam. Des. Appl., pp. 83–117, 2003.
[12] Kreuer, K. D., “Proton-Conducting Oxides,” Annu. Rev. Mater. Res., Vol. 33(1), pp. 333–359, 2003.
[13] Malavasi, L., Fisher, C. A. J., and Islam, M. S., “Oxide-Ion and Proton Conducting Electrolyte Materials for Clean Energy Applications: Structural and Mechanistic Features,” Chem. Soc. Rev., Vol. 39(11), pp. 4370–4387, 2010.
[14] Iwahara, H., “Oxide-Ionic and Protonic Conductors Based on Perovskite-Type Oxides and Their Possible Applications,” Solid State Ionics, Vol. 52(1–3), pp. 99–104, 1992.
[15] Iwahara, H., Asakura, Y., Katahira, K., and Tanaka, M., “Prospect of Hydrogen Technology Using Proton-Conducting Ceramics,” Solid State Ionics, Vol. 168(3–4), pp. 299–310, 2004.
[16] Yajima, T., Kazeoka, H., Yogo, T., and Iwahara, H., “Proton Conduction in Sintered Oxides Based on CaZrO3,” Solid State Ionics, Vol. 47(3–4), pp. 271–275, 1991.
[17] Guo, Y., Lin, Y., Shi, H., Ran, R., and Shao, Z., “A High Electrochemical Performance Proton Conductor Electrolyte with CO2 Tolerance,” Cuihua Xuebao / Chinese J. Catal., Vol. 30(6), pp. 479–481, 2009.
[18] Transactions, E. C. S., and Society, T. E., “Improvement of Protonic Ceramic Fuel Cells with Thin Film BCZY Electrolyte,” ECS Meet. Abstr., Vol. 68(1), pp. 2545–2553, 2015.
[19] Reddy, G. S., and Bauri, R., “Y and In-Doped BaCeO3-BaZrO3solid Solutions: Chemically Stable and Easily Sinterable Proton Conducting Oxides,” J. Alloys Compd., Vol. 688, pp. 1039–1046, 2016.
[20] Gopalan, S., “Thermodynamic Stabilities of SrCeO[Sub 3] and BaCeO[Sub 3] Using a Molten Salt Method and Galvanic Cells,” J. Electrochem. Soc., Vol. 140(4), p. 1060, 1993.
[21] Chen, F., Sørensen, O. T., Menga, G., and Penga, D., “Chemical Stability Study of BaCe Nd O Ceramic,” J. Mater. Chem., Vol. 7(3), pp. 481–485, 1997.
[22] Guo, Y., Lin, Y., Ran, R., and Shao, Z., “Zirconium Doping Effect on the Performance of Proton-Conducting BaZryCe0.8-YY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications,” J. Power Sources, Vol. 193(2), pp. 400–407, 2009.
[23] Afif, A., Radenahmad, N., Lim, C. M., Petra, M. I., Islam, M. A., Rahman, S. M. H., Eriksson, S., and Azad, A. K., “Structural Study and Proton Conductivity in BaCe0.7Zr0.25−xYxZn0.05O3(x = 0.05, 0.1, 0.15, 0.2 & 0.25),” Int. J. Hydrogen Energy, Vol. 41(27), pp. 11823–11831, 2016.
[24] Lagaeva, J., Medvedev, D., Demin, A., and Tsiakaras, P., “Insights on Thermal and Transport Features of BaCe0.8-XZrxY0.2O3-δ Proton-Conducting Materials,” J. Power Sources, Vol. 278, pp. 436–444, 2015.
[25] Heilig, M. L., “United States Patent Office,” ACM SIGGRAPH Comput. Graph., Vol. 28(2), pp. 131–134, 1994.
[26] Tanner, C. W., “The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance,” J. Electrochem. Soc., Vol. 144(1), p. 21, 1997.
[27] Gorte, R. J., and Vohs, J. M., “Nanostructured Anodes for Solid Oxide Fuel Cells,” Curr. Opin. Colloid Interface Sci., Vol. 14(4), pp. 236–244, 2009.
[28] Fang, S., Brinkman, K., and Chen, F., “Unprecedented CO2-Promoted Hydrogen Permeation in Ni-BaZr 0.1Ce0.7Y0.1Yb0.1O 3-δ Membrane,” ACS Appl. Mater. Interfaces, Vol. 6(1), pp. 725–730, 2014.
[29] Fabbri, E., Pergolesi, D., and Traversa, E., “Electrode Materials: A Challenge for the Exploitation of Protonic Solid Oxide Fuel Cells,” Sci. Technol. Adv. Mater., Vol. 11(4), 2010.
[30] Matsui, T., Kishida, R., Muroyama, H., and Eguchi, K., “Comparative Study on Performance Stability of Ni–Oxide Cermet Anodes under Humidified Atmospheres in Solid Oxide Fuel Cells,” J. Electrochem. Soc., Vol. 159(8), pp. F456–F460, 2012.
[31] Mather, G. C., Figueiredo, F. M., Jurado, J. R., and Frade, J. R., “Synthesis and Characterisation of Cermet Anodes for SOFCs with a Proton-Conducting Ceramic Phase,” Solid State Ionics, Vol. 162–163, pp. 115–120, 2003.
[32] Coors, W. G., and Manerbino, A., “Characterization of Composite Cermet with 68wt.% NiO and BaCe0.2Zr0.6Y0.2O3-δ,” J. Memb. Sci., Vol. 376(1–2), pp. 50–55, 2011.
[33] Bi, L., Fabbri, E., Sun, Z., and Traversa, E., “BaZr0.8Y0.2O3−δ-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method,” J. Electrochem. Soc., Vol. 158(7), p. B797, 2011.
[34] Narendar, N., Mather, G. C., Dias, P. A. N., and Fagg, D. P., “The Importance of Phase Purity in Ni-BaZr0.85Y 0.15O3-δ Cermet Anodes - Novel Nitrate-Free Combustion Route and Electrochemical Study,” RSC Adv., Vol. 3(3), pp. 859–869, 2013.
[35] Chevallier, L., Zunic, M., Esposito, V., Di Bartolomeo, E., and Traversa, E., “A Wet-Chemical Route for the Preparation of Ni-BaCe0.9Y0.1O3 - δ Cermet Anodes for IT-SOFCs,” Solid State Ionics, Vol. 180(9–10), pp. 715–720, 2009.
[36] Rainwater, B. H., Liu, M., and Liu, M., “A More Efficient Anode Microstructure for SOFCs Based on Proton Conductors,” Int. J. Hydrogen Energy, Vol. 37(23), pp. 18342–18348, 2012.
[37] Yang, L., Zuo, C., Wang, S., Cheng, Z., and Liu, M., “A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors,” Adv. Mater., Vol. 20(17), pp. 3280–3283, 2008.
[38] Song, H. S., Lee, S., Hyun, S. H., Kim, J., and Moon, J., “Compositional Influence of LSM-YSZ Composite Cathodes on Improved Performance and Durability of Solid Oxide Fuel Cells,” J. Power Sources, Vol. 187(1), pp. 25–31, 2009.
[39] Peng, R., Wu, T., Liu, W., Liu, X., and Meng, G., “Cathode Processes and Materials for Solid Oxide Fuel Cells with Proton Conductors as Electrolytes,” J. Mater. Chem., Vol. 20(30), pp. 6218–6225, 2010.
[40] Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J. C., and Marrony, M., “Perovskite and A2MO4-Type Oxides as New Cathode Materials for Protonic Solid Oxide Fuel Cells,” Electrochim. Acta, Vol. 55(20), pp. 5847–5853, 2010.
[41] Xie, Z., Xia, C., Zhang, M., Zhu, W., and Wang, H., “Ni1-XCux Alloy-Based Anodes for Low-Temperature Solid Oxide Fuel Cells with Biomass-Produced Gas as Fuel,” J. Power Sources, Vol. 161(2), pp. 1056–1061, 2006.
[42] Miyake, M., Matsumoto, S., Iwami, M., Nishimoto, S., and Kameshima, Y., “Electrochemical Performances of Ni1−xCux/SDC Cermet Anodes for Intermediate-Temperature SOFCs Using Syngas Fuel,” Int. J. Hydrogen Energy, Vol. 41(31), pp. 13625–13631, 2016.
[43] Wang, Z., Wang, S., Jiao, S., Weng, W., Cheng, K., Qian, B., Yu, H., and Chao, Y., “A Hierarchical Porous Microstructure for Improving Long-Term Stability of Ni1-XCux/SDC Anode-Supported IT-SOFCs Fueled with Dry Methane,” J. Alloys Compd., Vol. 702, pp. 186–192, 2017.
[44] Jia, L., Lu, Z., Miao, J., Liu, Z., Li, G., and Su, W., “Effects of Pre-Calcined YSZ Powders at Different Temperatures on Ni-YSZ Anodes for SOFC,” J. Alloys Compd., Vol. 414(1–2), pp. 152–157, 2006.
[45] Wang, S., He, Q., and Liu, M., “Promising Ni-Fe-LSGMC Anode Compatible with Lanthanum Gallate Electrolyte,” Electrochim. Acta, Vol. 54(15), pp. 3872–3876, 2009.
[46] Chen, M., Kim, B. H., Xu, Q., and Ahn, B. G., “Preparation and Electrochemical Properties of Ni-SDC Thin Films for IT-SOFC Anode,” J. Memb. Sci., Vol. 334(1–2), pp. 138–147, 2009.
[47] Da Costa, L. O. O., Da Silva, A. M., Noronha, F. B., and Mattos, L. V., “The Study of the Performance of Ni Supported on Gadolinium Doped Ceria SOFC Anode on the Steam Reforming of Ethanol,” Int. J. Hydrogen Energy, Vol. 37(7), pp. 5930–5939, 2012.
[48] Hoa, N. K., Rahman, H. A., and Somalu, M. R., “Effects of NiO Loading and Pre-Calcination Temperature on NiO-SDCC Composite Anode Powder for Low-Temperature Solid Oxide Fuel Cells,” Ceram. - Silikaty, Vol. 62(1), pp. 50–58, 2018.
[49] Betz, J., Nowak, L., Brinkmann, J. P., Bärmann, P., Diehl, M., Winter, M., Placke, T., and Schmuch, R., “Understanding the Impact of Calcination Time of High-Voltage Spinel Li1+xNi0.5Mn1.5O4 on Structure and Electrochemical Behavior,” Electrochim. Acta, Vol. 325, p. 134901, 2019.
[50] Mohammed, M. A., Uday, M. B., and Izman, S., “Effects of Calcination Temperature and Time on the Ca3Co4O9 Purity When Synthesized Using Starch-Assisted Sol-Gel Combustion Method,” J. Adv. Ceram., Vol. 9(2), pp. 162–172, 2020.
[51] Kim, H., Lu, C., Worrell, W. L., Vohs, J. M., and Gorte, R. J., “Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells,” J. Electrochem. Soc., Vol. 149(3), p. A247, 2002.
[52] Shaikjee, A., and Coville, N. J., “A Novel Type of Carbon: The Synthesis of Patterned Co-Block Carbon Nanofibers,” Small, Vol. 7(18), pp. 2593–2597, 2011.
[53] Wei, K., Wang, X., Budiman, R. A., Kang, J., Lin, B., Zhou, F., and Ling, Y., “Progress in Ni-Based Anode Materials for Direct Hydrocarbon Solid Oxide Fuel Cells,” J. Mater. Sci., Vol. 53(12), pp. 8747–8765, 2018.
[54] Lee, J. H., Lee, E. G., Joo, O. S., and Jung, K. D., “Stabilization of Ni/Al2O3 Catalyst by Cu Addition for CO2 Reforming of Methane,” Appl. Catal. A Gen., Vol. 269(1–2), pp. 1–6, 2004.
[55] Lorenzut, B., Montini, T., De Rogatis, L., Canton, P., Benedetti, A., and Fornasiero, P., “Hydrogen Production through Alcohol Steam Reforming on Cu/ZnO-Based Catalysts,” Appl. Catal. B Environ., Vol. 101(3–4), pp. 397–408, 2011.
[56] Wada, K., Yamabe, J., Ogawa, Y., Takakuwa, O., Iijima, T., and Matsunaga, H., “Comparative Study of Hydrogen-Induced Intergranular Fracture Behavior in Ni and Cu–Ni Alloy at Ambient and Cryogenic Temperatures,” Mater. Sci. Eng. A, Vol. 766(August), p. 138349, 2019.
[57] Sowjanya, C., Mandal, R., and Pratihar, S. K., “Grain Size Dependent Electrical Conductivity, Chemical Surface Exchange and Bulk Diffusion Coefficient of La0.5Sr0.5Al0.2Fe0.8O3-δ,” J. Alloys Compd., Vol. 818(xxxx), p. 152831, 2020.
[58] Mah, J. C. W., Muchtar, A., Somalu, M. R., and Ghazali, M. J., “Metallic Interconnects for Solid Oxide Fuel Cell: A Review on Protective Coating and Deposition Techniques,” Int. J. Hydrogen Energy, Vol. 42(14), pp. 9219–9229, 2017.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明