參考文獻 |
[1] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[2] http://www.sgesc.nat.gov.tw/index.php
[3] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, 122, pp. 9-18, 2003.
[4] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, 161, pp. 1012-1022, 2006.
[5] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, 250, pp. 21-29, 2014.
[6] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, 7, pp. 269-278, 2007.
[7] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, 183, pp. 682-686, 2008.
[8] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, 181, pp. 1568-1576, 2010.
[9] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, pp. 573-578, 1987.
[10] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., 65, pp. 581-589, 2010.
[11] J. Bu, P. G. Jönsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3−δ (Ln = Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, 272, pp. 786-793, 2014.
[12] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation — A review,” Renew. Sustain. Energy Rev., 20, pp. 430-442, 2013.
[13] C. Zamfirescu and I. Dincer, “Thermodynamic performance analysis and optimization of a SOFC-H + system,” Thermochimica Acta, 486, pp. 32-40, 2009.
[14] H. Xu, Z. Dang, and B. F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., 50, no. 1, pp. 1101-1110, 2013.
[15] B. Coelho, A.C. Oliveira, A. Mendes, “Concentrated solar power for renewable electricity and hydrogen production from water—a review,” Energy Environ, 3, pp. 1398-1405, 2010.
[16] M. Martini, A. van den Berg, F. Gallucci, M. van Sint Annaland, “Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture, ”J. Chemical Engineering, 303, pp. 73-88, 2016.
[17] H.G. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P.D. Costa, M.E. Gálvez, “Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition, ”J. Reaction Kinetics, Mechanisms and Catalysis, 121, pp. 185-208, 2017.
[18] V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, A. Manerbino, W. G. Coors, M. Stoukides, “Methane steam reforming at low temperatures in a BaZr0.7Ce0.2Y0.1O2.9 proton conducting membrane reactor,” Appl.Catal., B: Environ, 186, pp. 1-9, 2016
[19] A. Kumar, M. Baldea, T. F. Edgar, “Real-time optimization of an industrial steam-methane reformer under distributed sensing,” Control Eng. Pract, 54, pp. 140-153, 2016
[20] A. Jha, D. W. Jeong, Y. L. Lee, W. J. Jang, J. O. Shim, K. W. Jeon, C. V. Rode, H. S. Roh, “Chromium free high temperature water-gas shift catalyst for the production of hydrogen from waste derived synthesis gas, ” Appl. Catal., A:Gen, 522, pp. 21-31, 633
[21] K. H. Lin, W. H. Lin, C. H. Hsiao, H. F. Chang, A. C. C. Chang, “Hydrogen production in steam reforming of glycerol by conventional and membrane reactors, ” Int. J. Hydrogen Energy, 37, pp. 13770-13776, 2012
[22] Y. Sekine, K. Yamagishi, Y. Nogami, R. Manabe, K. Oshima, S. Ogo, “Low temperature catalytic water gas shift in an electric field, ” Catal. Lett, 146, pp. 1423-1428, 2016
[23] L. Bi, S. Boulfrad, E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chem. Soc. Rev., 43, pp. 8255-8270, 2014
[24] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte / electrode-supported solid oxide fuel cells,” J. Applied Electrochemistry, 32, pp. 339–347, 2002.
[25] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., 37, pp. 1568–78, 2008.
[26] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, 26, no. 10, pp. 1103–1108, 2001.
[27] A. K. Demin, P. E. Tsiakaras, V. a. Sobyanin, and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor,” Solid State Ionics, 152–153, pp. 555–560, 2002.
[28] L. Namwong and S. Authayanun,” Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products” J. Power Sources, 331, pp. 515–526, 2016.
[29] M. Ni, K.H. Leung, Y.C. Leung” Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer” J. hydrogen energy, 33, pp. 4040-4047, 2008.
[30] V. Menon, V. M.Janardhanan, and O. Deutschmann, “A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production,” Chem. Eng. Sci., 110, pp. 83–93, 2014.
[31] D. Grondin, J. Deseure, A. Brisse, M. Zahid, and P. Ozil, “Simulation of a high temperature electrolyzer,” J. Appl. Electrochem., 40, no. 5, pp. 933–941, 2010.
[32] J. KOH, D. YOON, and C. H. OH, “Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell,” J. Nucl. Sci. Technol., 47, no. 7, pp. 599–607, 2010.
[33] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” 158, pp. 1290–1305, 2006.
[34] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant : Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[35] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, 277, pp. 292–303, Mar. 2015.
[36] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, 223, pp. 9–17, 2013.
[37] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, “Syngas production via high temperature steam/CO2 co electrolysis: an economic assessment,” Energy Environ. Sci., no. 3, pp. 1382–1397, 2010.
[38] Y. ElFouih and C. Bouallou, “Recycling of carbon dioxide to produce ethanol,” Energy Procedia, 37, pp. 6679–6686, 2013.
[39] G. Cinti, D. Frattini, E. Jannelli, U. Desideri, and G. Bidini, “Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant,” Appl. Energy, 192, pp. 466–476, 2017.
[40] F. Wei et al., “Evaluation on the efficiency of a solar powered solid oxide electrolysis cell plant for carbon dioxide reduction,” Int. J. Electrochem. Sci., 9, no. 3, pp. 1146–1162, 2014. |