博碩士論文 107323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.144.181.40
姓名 姚承佑(Cheng You, Yao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 內重組可逆質子傳導型陶瓷電化學儲能電池複合系統分析
(Analysis of Internal Reform Reversible Protonic Ceramic Electrochemical Cells Compound System)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 本研究針對可逆質子傳導型陶瓷電化學儲能電池複合系統(Reversible Protonic Solid Oxide Electrochemical Cell, Re-PSOC)進行分析。根據電化學理論利用Matlab計算燃料電池之性能曲線,並將電化學模型鑲嵌於商用軟體Thermolib中進行系統模擬。本研究建立Re-PSOC電化學模型,研究電池在不同孔隙率、導電度、陰陽極及電解質厚度對電化學性能之影響,探討各項電池參數對電池性能的敏感度。為探討試驗電池級別升級為單電池之濃差效應,本研究建立二維通量模型進行氣體濃度之模擬,探討在不同溫度、氣氛及流量對電池性能之影響。並將二維通量模型模擬之電池性能曲線與本研究製作之Re-PSOC模型結合,從中分析在穩態及相同功率的情況下之熱力特性,並分析在燃料電池模式及電解產氫模式下之兩套系統。
摘要(英) This study analyzes the reversible protonic solid oxide electrochemical cell (Re-PSOC) composite system. According to the electrochemical theory, Matlab is used for theoretical/computational performance analysis of the fuel cell, and the electrochemical model is embedded in the commercial software Thermolib for system simulation. The Re-PSOC electrochemical model is established to study the effects of porosity, conductivity, thickness variation of components on the electrochemical performance of the battery. Also, the sensitivity of various battery parameters on the performance of battery in the largescale establishment is also analyzed theoretically. A two dimensional flux model is established in single cells to analyze the concentration effect of single cells. The concentration of gases, impact of various temperature, various fuels and flow rates on the performance of Re-PSOC and battery is analyzed in this study. Simulations are performed in fuel cell and electrolysis mode to analyze the thermodynamic characteristics of all the system in the steady state and same power mode.
關鍵字(中) ★ 燃料電池
★ 內重組
★ 系統
★ 模擬
★ 電化學
關鍵字(英)
論文目次 中文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XII
符號表 XIII
第一章 緒論 1
第二章 理論分析 24
第三章 數值方法與驗證 35
第四章 結果與討論 42
第五章 參考文獻 72
參考文獻 [1] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[2] http://www.sgesc.nat.gov.tw/index.php
[3] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, 122, pp. 9-18, 2003.
[4] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, 161, pp. 1012-1022, 2006.
[5] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, 250, pp. 21-29, 2014.
[6] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, 7, pp. 269-278, 2007.
[7] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, 183, pp. 682-686, 2008.
[8] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, 181, pp. 1568-1576, 2010.
[9] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, pp. 573-578, 1987.
[10] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., 65, pp. 581-589, 2010.
[11] J. Bu, P. G. Jönsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3−δ (Ln = Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, 272, pp. 786-793, 2014.
[12] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation — A review,” Renew. Sustain. Energy Rev., 20, pp. 430-442, 2013.
[13] C. Zamfirescu and I. Dincer, “Thermodynamic performance analysis and optimization of a SOFC-H + system,” Thermochimica Acta, 486, pp. 32-40, 2009.
[14] H. Xu, Z. Dang, and B. F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., 50, no. 1, pp. 1101-1110, 2013.
[15] B. Coelho, A.C. Oliveira, A. Mendes, “Concentrated solar power for renewable electricity and hydrogen production from water—a review,” Energy Environ, 3, pp. 1398-1405, 2010.
[16] M. Martini, A. van den Berg, F. Gallucci, M. van Sint Annaland, “Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture, ”J. Chemical Engineering, 303, pp. 73-88, 2016.
[17] H.G. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P.D. Costa, M.E. Gálvez, “Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition, ”J. Reaction Kinetics, Mechanisms and Catalysis, 121, pp. 185-208, 2017.
[18] V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, A. Manerbino, W. G. Coors, M. Stoukides, “Methane steam reforming at low temperatures in a BaZr0.7Ce0.2Y0.1O2.9 proton conducting membrane reactor,” Appl.Catal., B: Environ, 186, pp. 1-9, 2016
[19] A. Kumar, M. Baldea, T. F. Edgar, “Real-time optimization of an industrial steam-methane reformer under distributed sensing,” Control Eng. Pract, 54, pp. 140-153, 2016
[20] A. Jha, D. W. Jeong, Y. L. Lee, W. J. Jang, J. O. Shim, K. W. Jeon, C. V. Rode, H. S. Roh, “Chromium free high temperature water-gas shift catalyst for the production of hydrogen from waste derived synthesis gas, ” Appl. Catal., A:Gen, 522, pp. 21-31, 633
[21] K. H. Lin, W. H. Lin, C. H. Hsiao, H. F. Chang, A. C. C. Chang, “Hydrogen production in steam reforming of glycerol by conventional and membrane reactors, ” Int. J. Hydrogen Energy, 37, pp. 13770-13776, 2012
[22] Y. Sekine, K. Yamagishi, Y. Nogami, R. Manabe, K. Oshima, S. Ogo, “Low temperature catalytic water gas shift in an electric field, ” Catal. Lett, 146, pp. 1423-1428, 2016
[23] L. Bi, S. Boulfrad, E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chem. Soc. Rev., 43, pp. 8255-8270, 2014
[24] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte / electrode-supported solid oxide fuel cells,” J. Applied Electrochemistry, 32, pp. 339–347, 2002.
[25] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., 37, pp. 1568–78, 2008.
[26] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, 26, no. 10, pp. 1103–1108, 2001.
[27] A. K. Demin, P. E. Tsiakaras, V. a. Sobyanin, and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor,” Solid State Ionics, 152–153, pp. 555–560, 2002.
[28] L. Namwong and S. Authayanun,” Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products” J. Power Sources, 331, pp. 515–526, 2016.
[29] M. Ni, K.H. Leung, Y.C. Leung” Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer” J. hydrogen energy, 33, pp. 4040-4047, 2008.
[30] V. Menon, V. M.Janardhanan, and O. Deutschmann, “A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production,” Chem. Eng. Sci., 110, pp. 83–93, 2014.
[31] D. Grondin, J. Deseure, A. Brisse, M. Zahid, and P. Ozil, “Simulation of a high temperature electrolyzer,” J. Appl. Electrochem., 40, no. 5, pp. 933–941, 2010.
[32] J. KOH, D. YOON, and C. H. OH, “Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell,” J. Nucl. Sci. Technol., 47, no. 7, pp. 599–607, 2010.
[33] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” 158, pp. 1290–1305, 2006.
[34] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant : Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[35] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, 277, pp. 292–303, Mar. 2015.
[36] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, 223, pp. 9–17, 2013.
[37] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, “Syngas production via high temperature steam/CO2 co electrolysis: an economic assessment,” Energy Environ. Sci., no. 3, pp. 1382–1397, 2010.
[38] Y. ElFouih and C. Bouallou, “Recycling of carbon dioxide to produce ethanol,” Energy Procedia, 37, pp. 6679–6686, 2013.
[39] G. Cinti, D. Frattini, E. Jannelli, U. Desideri, and G. Bidini, “Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant,” Appl. Energy, 192, pp. 466–476, 2017.
[40] F. Wei et al., “Evaluation on the efficiency of a solar powered solid oxide electrolysis cell plant for carbon dioxide reduction,” Int. J. Electrochem. Sci., 9, no. 3, pp. 1146–1162, 2014.
指導教授 曾重仁 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明