博碩士論文 106323045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.141.24.158
姓名 李悅揚(Yueh-Yang Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以表面修飾對微流道做A-Beta檢測分析之研究
(The Study of A-Beta Aggregation Analysis in Microfluidics with Surface Modification)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-24以後開放)
摘要(中) 本篇論文以研究阿茲海默症為出發點,因為腦脊液的異常流動造成澱粉樣蛋白Aβ_42聚集導致阿茲海默疾病,全球數千萬老年人因此病在身,針對此疾病引起極大的關注。將微流道技術與生醫研究做結合,利用Polydimethylsiloxane把曝光微影製程來製作模型進行翻模,本身Polydimethylsiloxane為疏水性,透過將不同類型的微流道進行表面修飾,使表面改質達到親水性,能透過物理吸附提高蛋白沉澱效果,經由人造仿生流速結合Aβ的流動,進行傳遞,透過檢測觀察表面的變化,發現表面進行表面修飾後使Aβ抑制劑和Aβ蛋白起著接合作用,並提高了澱粉樣蛋白β留在組織上,分析不同微流道對聚集之影響。另外,使用了創新的表面修飾方法提高官能團化反應,也透過簡單的檢測儀器驗證表面修飾的存在。本論文主要是分析柱狀與平滑微流道的吸附差異,因為在柱狀微流通道中表面積減小,但接觸面積增加,使蛋白分子接觸提升,更能吸附在微流道內部。
摘要(英) In this study, takes the Alzheimer′s disease as a starting point, because a abnormal flow of cerebrospinal fluid causes amyloid beta to cause Alzheimer′s disease, which causes tens of millions of elderly people around the world to become get sick, it is of great concern. Combining microfluidic technology with biomedical techno-logy, using Polydimethylsiloxane to make a model with lithography process to rolling over, polydimethylsiloxane itself for hydrophobic, through the different types of microchannel with surface modification, so that surface modification to achieve hydrophilic, can improve the protein aggregat-ion effect by physical adsorption. Throu-gh the flow of artificial flow rate binding A-beta, use the instrument to detect and observe the surface condition, found that the surface modification of the surface to make A-beta inhibitors and A-beta protein have a joint effect, and improve the amyloid beta leave on the micro-channel, analyze the effects of different microchannel on aggregation.
In addition, the surface modification method integrate the microfluidic sys-tem to improve the functional group reaction. This study mainly analyzes the adsorption difference between column and smooth microchannel, because the surface area of the column is reduced, and the contact area increases, that A- beta protein contacts is enhanced, it can be more adsorbed inside the micro-channel.
關鍵字(中) ★ 阿茲海默氏症
★ 表面修飾
★ 微流道
★ A-beta聚集
關鍵字(英)
論文目次 摘要 V
Abstract VI
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XIII
一、 前言 1
1.1 阿茲海默氏症與A-beta漾蛋白 1
1.2 微流道應用於阿茲海默症中的檢測 4
1.3 表面修飾對A-beta之影響 5
1.3.1. 物理修飾法 6
1.3.2. 化學修飾法 8
1.4 研究動機 10
二、 實驗設計與架構 11
2.1 微流道材料與表面修飾藥品 11
2.1.1 微流道設計 11
2.1.2 微流道製程 12
2.2 實驗方法 13
2.2.1 PDMS表面修飾步驟/官能團化反應 13
2.2.2 表面修飾實驗檢驗 14
2.2.3 螢光強度分析檢驗 17
三、 結果分析與討論 19
3.1 表面修飾之概念 19
3.2 表面修飾過程驗證之影響 20
3.2.1 平滑PDMS表面對於修飾之影響 20
3.2.2 不同微流道對於修飾之影響 32
3.3 Aβ聚集效果之分析 40
3.3.1 不同微流道未修飾及修飾後之Aβ聚集影響 42
3.3.2 不同微流道做表面修飾之Aβ聚集差異 44
3.4 流速對A-beta聚集效果之影響 45
四、 結論 48
未來展望 49
參考文獻 50
附錄 52
參考文獻 1. Kemp, P., et al., Alzheimer’s disease: differences in technetium-99m HMPAO SPECT scan findings between early onset and late onset dementia. Journal of Neurology, Neurosurgery & Psychiatry, 2003. 74(6): p. 715-719.
2. Alzheimer, A., The discovery of Alzheimer′s disease. Dialogues Clin Neuroscience, 1906.
3. Berry, B.J., et al., Physiological Aβ concentrations produce a more biomimetic representation of the Alzheimer’s Disease phenotype in iPSC derived human neurons. ACS chemical neuroscience, 2018. 9(7): p. 1693-1701.
4. Vigo‐Pelfrey, C., et al., Rapid Communication: Characterization of β‐Amyloid Peptide from Human Cerebrospinal Fluid. Journal of neurochemistry, 1993. 61(5): p. 1965-1968.
5. Motter, n., et al., Reduction of β‐amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer′s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 1995. 38(4): p. 643-648.
6. Heneka, M.T., et al., Neuroinflammation in Alzheimer′s disease. The Lancet Neurology, 2015. 14(4): p. 388-405.
7. Brown, P., et al., Molecular mechanisms of cerebrospinal fluid production. Neuroscience, 2004. 129(4): p. 955-968.
8. Chen, G.-f., et al., Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017. 38(9): p. 1205-1235.
9. Gospodarczyk, W. and M. Kozak, Microchip Circulation Drastically Accelerates Amyloid Aggregation of 1–42 β-amyloid Peptide from Felis catus. ACS chemical neuroscience, 2017. 8(11): p. 2558-2567.
10. Lun, M.P., E.S. Monuki, and M.K. Lehtinen, Development and functions of the choroid plexus–cerebrospinal fluid system. Nature Reviews Neuroscience, 2015. 16(8): p. 445-457.
11. Ho, C.M. and Y.C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics, 1998. 30: p. 579-612.
12. Lee, J.S. and C.B. Park, Microfluidic dissociation and clearance of Alzheimer’s β-amyloid aggregates. Biomaterials, 2010. 31(26): p. 6789-6795.
13. Devadhasan, J.P., S. Kim, and J. An, Fish-on-a-chip: a sensitive detection microfluidic system for alzheimer′s disease. Journal of biomedical science, 2011. 18(1): p. 33.
14. Ren, Y., A. Kunze, and P. Renaud, Compartmentalized microfluidics for in vitro Alzheimer’s disease studies, in Microfluidic and compartmentalized platforms for neurobiological research. 2015, Springer. p. 197-215.
15. Mohamadi, R.M., et al., An integrated microfluidic chip for immunocapture, preconcentration and separation of β-amyloid peptides. Biomicrofluidics, 2015. 9(5): p. 054117.
16. Mai, T.D., et al., Single-step immunoassays and microfluidic droplet operation: towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease. Sensors and Actuators B: Chemical, 2018. 255: p. 2126-2135.
17. Gokaltun, A., et al., Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology, 2017. 5(01): p. 1-12.
18. Qiu, J., P. Hu, and R. Liang, Separation and simultaneous determination of uric acid and ascorbic acid on a dynamically modified poly (dimethylsiloxane) microchip. Analytical Sciences, 2007. 23(12): p. 1409-1414.
19. Sung, W.-C., et al., Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly (dimethylsiloxane) microchannels for flow-through immunoassays. Analytical chemistry, 2009. 81(19): p. 7967-7973.
20. Lee, S. and J. Vörös, An aqueous-based surface modification of poly (dimethylsiloxane) with poly (ethylene glycol) to prevent biofouling. Langmuir, 2005. 21(25): p. 11957-11962.
21. Xu, J. and K.K. Gleason, Conformal, amine-functionalized thin films by initiated chemical vapor deposition (iCVD) for hydrolytically stable microfluidic devices. Chemistry of Materials, 2010. 22(5): p. 1732-1738.
22. Xia, H., et al., Microfluidic based immunosensor for detection and purification of carbonylated proteins. Biomedical microdevices, 2013. 15(3): p. 519-530.
23. Gospodarczyk, W. and M. Kozak, The severe impact of in vivo-like microfluidic flow and the influence of gemini surfactants on amyloid aggregation of hen egg white lysozyme. RSC advances, 2017. 7(18): p. 10973-10984.
指導教授 曹嘉文 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明