博碩士論文 107323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.133.139.142
姓名 沈哲墉(Zhe-Yong Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助電化學加工微孔陣列之研究
(An Investigation of Ultrasonic-Assisted Electrochemical Machining of Micro-Hole Array)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助磨削AGC玻璃加工之研究
★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究★ 高功率超音波振動輔助線切割放電加工SKD61材料之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文為超音波輔助電化學加工微孔陣列之研究,採用超音波輔助振動一體式陣列電極,對301不鏽鋼試片進行陣列鑽孔加工,並探討各種加工參數如:超音波振幅、工作電壓、脈衝休止時間及電極進給速率對各種加工特性的影響如:平均對角線長、對角線長變異量、微孔入口及出口之錐角。
  實驗結果顯示,超音波輔助振動電極對電解液產生週期性的壓力差,這個週期性的壓力差形成泵吸作用及空蝕作用,泵吸作用使大範圍的電解液被吸入、排出加工間隙,而空蝕作用所產生的微氣泡破裂後產生微射流高速擾動小範圍的電解液。上述兩種作用能有效的更新加工間隙內的電解液,補充電化學反應中消耗的離子,並將間隙中的固體反應產物、氣體及反應熱排出,進而提升加工速度,並降低微孔陣列之平均對角線長。當使用超音波輔助電化學加工微孔陣列時,超音波振幅由0.94μm(超音波振幅1段)提升至2.87μm(超音波振幅9段)時可提升加工速度500%以上。在超音波振幅9段(2.87μm)、工作電壓11V、脈衝休止時間50μs、電極進給速率5μm/s實驗最佳參數組合下進行加工,能夠得到最小的平均對角線長1200μm及較小的對角線長變異量44μm,並能改善微孔入口及出口之錐角。
摘要(英) This thesis is an investigation of ultrasonic-assisted electrochemical machining of the micro-hole array. In this study, one-piece array electrode assisted by ultrasonic vibration is used to produce micro-hole array on 301 stainless steel plate. The effects of processing parameters such as ultrasonic amplitude, working voltage, pulse off time and electrode feed rate on quality characteristics. The quality characteristics including average diagonal length, diagonal length variation, inlet taper angle and outlet taper angle were discussed.

The experimental results indicate that the ultrasonic vibration electrode generates a periodic pressure difference to the electrolyte. This periodic pressure difference forms the pumping effect and the cavitation effect. The pumping effect causes a wide range of electrolytes to be sucked into and pushed out off the machining gap. Besides, the periodic pressure difference leads to a cavitation effect, which produces microbubbles. Once the microbubble collapse, it produces a microjet which disturbs a small range of electrolytes instantaneously. Both effects can effectively refresh the electrolyte in the machining gap, supply the ions consumed in the electrochemical reaction, and exhaust the solid reaction products, gases, and reaction heat in the gap. The phenomenon enhances the processing speed and reduces the average diagonal length of micro-hole array. By using ultrasonic-assisted electrochemical machining micro-hole array, when the ultrasonic amplitude is increased from 0.94 μm (power of ultrasonic vibration lv.1) to 2.87 μm (power of ultrasonic vibration lv.1), the processing speed can be improved by more than 500%. Processing under the experimental optimal parameter, such as the power of ultrasonic vibration level 9 (2.87μm), working voltage 11V, pulse off time 50μs and electrode feed rate 5μm/s, can obtain the minimum average diagonal length of 1200μm and smaller diagonal length variation of 44μm. It also improve the inlet and outlet taper angle of micro holes.
關鍵字(中) ★ 超音波輔助
★ 電化學加工
★ 微孔陣列
★ 空蝕作用
關鍵字(英) ★ Ultrasonic-Assisted
★ Electrochemical Machining
★ Micro-Hole Array
★ Cavitation
論文目次 摘 要 i
ABSTRACT ii
致 謝 iv
目 錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 文獻回顧 6
1-4 論文架構 11
第二章 實驗基礎原理 12
2-1 電化學加工的基礎理論 12
2-1-1 電化學反應機制 12
2-1-2 法拉第電解定律(Faraday′s Laws of Electrolysis) 14
2-1-3 電化學加工速率 15
2-1-4 平衡間隙 16
2-1-5 歐姆定律(Ohm′s Law) 16
2-1-6 電極電位-金屬與溶液界面雙電層理論(Electrical Double Layer Theory) 17
2-1-7 陽極極化曲線及其特徵 18
2-1-8 電流密度與電流效率 20
2-1-9 脈衝占空比 22
2-2 超音波原理 23
2-2-1 泵吸作用(Pumping Effect) 23
2-2-2 空蝕作用(Cavitation) 24
2-2-3 超音波振動電極之運動分析 24
2-3 氣泡影響電化學加工之理論(氣泡與導電度關係理論) 27
2-3-1 體積分率(Volume Fraction) 27
2-3-2 導電度(Electrical Conductivity) 27
第三章 實驗設置 29
3-1 實驗方法 29
3-2 實驗設備 30
3-2-1 電化學加工機 30
3-2-2 去離子水系統 31
3-2-3 電子天平 32
3-2-4 電磁加熱攪拌器 33
3-2-5 線切割放電加工機 33
3-2-6 超音波主軸與發振器 34
3-2-7 超音波振幅量刀器 35
3-2-8 直流脈衝電源供應器 36
3-2-9 示波器 37
3-2-10 超音波洗淨機 37
3-2-11 顯微影像量測系統 38
3-2-12 精密試片切割機 39
3-2-13 金相研磨拋光機 39
3-2-14 掃描式電子顯微鏡(Scanning Electron Microscope) 40
3-2-15 表面輪廓儀 41
3-3 實驗材料 42
3-3-1 不鏽鋼試片 42
3-3-2 一體式陣列刀具電極 43
3-3-3 電解液 44
3-4 實驗流程與方法 46
3-4-1 電解液配製 46
3-4-2 試片準備 47
3-4-3 刀具電極 47
3-4-4 超音波振幅量測 48
3-5 實驗參數設定 49
3-6 實驗架構 51
3-7 實驗結果量測與觀察 52
3-7-1 微孔量測 52
3-7-2 幾何特徵觀察 54
第四章 實驗結果與討論 57
4-1 傳統電化學加工微孔陣列之結果 57
4-2 電解液噴流對加工微孔陣列之影響 62
4-3 有無超音波輔助對加工微孔陣列之影響 66
4-4 超音波振幅對加工微孔陣列之影響 69
4-5 工作電壓對加工微孔陣列之影響 76
4-6 脈衝休止時間對加工微孔陣列之影響 83
4-7 電極進給速率對加工微孔陣列之影響 90
第五章 結論 97
未來展望 100
參考文獻 101
參考文獻 [1] J. F. Wilson, "Practice and theory of electrochemical machining", 1971.
[2] K. P. Rajurkar et al., "Micro and nano machining by electro-physical and chemical processes", CIRP annals, vol. 55, no. 2, pp. 643-666, 2006.
[3] R. Schuster, V. Kirchner, P. Allongue, and G. Ertl, "Electrochemical micromachining", Science, vol. 289, no. 5476, pp. 98-101, 2000.
[4] 朱樹敏,電化學加工技術,化學工業出版社,北京,2006。
[5] B. Bhattacharyya, J. Munda, and M. Malapati, "Advancement in electrochemical micro-machining", International Journal of Machine Tools and Manufacture, vol. 44, no. 15, pp. 1577-1589, 2004.
[6] J. Kozak, K. P. Rajurkar, and Y. Makkar, "Selected problems of micro-electrochemical machining", Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 426-431, 2004.
[7] S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, "Electro-chemical micro drilling using ultra short pulses", Precision Engineering, vol. 28, no. 2, pp. 129-134, 2004.
[8] M. Hewidy, S. Ebeid, K. P. Rajurkar, and M. El-Safti, "Electrochemical machining under orbital motion conditions", Journal of Materials Processing Technology, vol. 109, no. 3, pp. 339-346, 2001.
[9] S. Ebeid, M. Hewidy, T. El-Taweel, and A. Youssef, "Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology", Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 432-438, 2004.
[10] H. P. Tsui, J. C. Hung, J. C. You, and B. H. Yan, "Improvement of electrochemical microdrilling accuracy using helical tool", Materials and Manufacturing Processes, vol. 23, no. 5, pp. 499-505, 2008.
[11] Y. K. Yang, "A Study on Magnetic Field Assisted Micro Electro-Chemical Milling", National Central University, M.A. Thesis, 2009.
[12] M. S. Park and C. N. Chu, "Micro-electrochemical machining using multiple tool electrodes", Journal of Micromechanics and Microengineering, vol. 17, no. 8, p. 1451, 2007.
[13] M. Wang and D. Zhu, "Fabrication of multiple electrodes and their application for micro-holes array in ECM", The International Journal of Advanced Manufacturing Technology, vol. 41, no. 1-2, pp. 42-47, 2009.
[14] L. Cagnon et al., "Electrochemical micromachining of stainless steel by ultrashort voltage pulses", Zeitschrift für Physikalische Chemie, vol. 217, no. 4, pp. 299-314, 2003.
[15] B. Bhattacharyya and J. Munda, "Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain", International Journal of Machine Tools and Manufacture, vol. 43, no. 13, pp. 1301-1310, 2003.
[16] A. Ruszaj, M. Zybura, R. Żurek, and G. Skrabalak, "Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217, no. 10, pp. 1365-1371, 2003.
[17] M. Sen and H. Shan, "A review of electrochemical macro-to micro-hole drilling processes", International journal of machine tools and manufacture, vol. 45, no. 2, pp. 137-152, 2005.
[18] X. Lu and Y. Leng, "Electrochemical micromachining of titanium surfaces for biomedical applications", Journal of Materials Processing Technology, vol. 169, no. 2, pp. 173-178, 2005.
[19] T. Kurita, K. Chikamori, S. Kubota, and M. Hattori, "A study of three-dimensional shape machining with an ECμM system", International Journal of Machine Tools and Manufacture, vol. 46, no. 12-13, pp. 1311-1318, 2006.
[20] B. Park, B. Kim, and C. Chu, "The effects of tool electrode size on characteristics of micro electrochemical machining", CIRP annals, vol. 55, no. 1, pp. 197-200, 2006.
[21] B. Bhattacharyya, M. Malapati, J. Munda, and A. Sarkar, "Influence of tool vibration on machining performance in electrochemical micro-machining of copper", International Journal of Machine Tools and Manufacture, vol. 47, no. 2, pp. 335-342, 2007.
[22] J. Munda, M. Malapati, and B. Bhattacharyya, "Control of micro-spark and stray-current effect during EMM process", Journal of Materials Processing Technology, vol. 194, no. 1-3, pp. 151-158, 2007.
[23] W. Natsu, T. Ikeda, and M. Kunieda, "Generating complicated surface with electrolyte jet machining", Precision Engineering, vol. 31, no. 1, pp. 33-39, 2007.
[24] L. Staemmler, K. Hofmann, and H. Kück, "Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses", Microsystem Technologies, vol. 14, no. 2, pp. 249-254, 2008.
[25] P. Pa, "Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining", Electrochimica Acta, vol. 54, no. 25, pp. 6022-6027, 2009.
[26] I. Yang, M. S. Park, and C. N. Chu, "Micro ECM with ultrasonic vibrations using a semi-cylindrical tool", International Journal of Precision Engineering and Manufacturing, vol. 10, no. 2, pp. 5-10, 2009.
[27] S. Ali, S. Hinduja, J. Atkinson, and M. Pandya, "Shaped tube electrochemical drilling of good quality holes", CIRP annals, vol. 58, no. 1, pp. 185-188, 2009.
[28] S. Skoczypiec, "Research on ultrasonically assisted electrochemical machining process", The International Journal of Advanced Manufacturing Technology, vol. 52, no. 5-8, pp. 565-574, 2011.
[29] W. Natsu, H. Nakayama, and Z. Yu, "Improvement of ECM characteristics by applying ultrasonic vibration", International Journal of Precision Engineering and Manufacturing, vol. 13, no. 7, pp. 1131-1136, 2012.
[30] J. Wang, W. Chen, F. Gao, and F. Han, "Ultrasonically assisted electrochemical micro drilling with sidewall-insulated electrode", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, no. 3, pp. 466-474, 2016.
[31] G. Skrabalak and A. Stwora, "Electrochemical, electrodischarge and electrochemical-discharge hole drilling and surface structuring using batch electrodes", Procedia Cirp, vol. 42, pp. 766-771, 2016.
[32] M. Wang, Y. Zhang, Z. He, and W. Peng, "Deep micro-hole fabrication in EMM on stainless steel using disk micro-tool assisted by ultrasonic vibration", Journal of Materials Processing Technology, vol. 229, pp. 475-483, 2016.
[33] K. Egashira, A. Hayashi, Y. Hirai, K. Yamaguchi, and M. Ota, "Drilling of microholes using electrochemical machining", Precision Engineering, vol. 54, pp. 338-343, 2018.
[34] C. Bradley and J. Samuel, "Controlled phase interactions between pulsed electric fields, ultrasonic motion, and magnetic fields in an anodic dissolution cell", Journal of Manufacturing Science and Engineering, vol. 140, no. 4, 2018.
[35] M. Baoji, P. Cheng, K. Yun, and P. Yin, "Effect of magnetic field on the electrochemical machining localization", The International Journal of Advanced Manufacturing Technology, vol. 102, no. 1-4, pp. 949-956, 2019.
[36] J. C. Kuo, "An Investigation of Ultrasonic-Assisted Micro Electrochemical Drilling of Nickel-Based Alloy", National Central University, M.A. Thesis, 2019.
[37] J. Arab, P. Adhale, D. K. Mishra, and P. Dixit, "Micro array hole formation in glass using electrochemical discharge machining", Procedia Manufacturing, vol. 34, pp. 349-354, 2019.
[38] B. Ghoshal and B. Bhattacharyya, "Influence of vibration on micro-tool fabrication by electrochemical machining", International Journal of Machine Tools and Manufacture, vol. 64, pp. 49-59, 2013.
[39] J. Thorpe and R. Zerkle, "A Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric Cavities by Electrochemical Machining", Fundamentals of Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39, 1971.
[40] 洪智育,「微電化學深孔加工之研究與分析」,國立中央大學,碩士論文,2006。
[41] Z. W. Fan, "The Analysis and Investigation on the Micro-electrode and Micro-hole Fabrication by Electrochemical Machining", National Central University, PhD Thesis, 2010.
[42] S. Y. Lin, "An Investigation of Magnetic Field Assisted Electrochemical Micro Drilling", National Central University, M.A. Thesis, 2011.
[43] W. M. Haynes, CRC handbook of chemistry and physics, CRC press, 2014.
指導教授 崔海平(Hai-Ping Hsui) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明