參考文獻 |
[1] Ben Young, "Experimental and numerical investigation of high strength stainless steel structures", Journal of Constructional Steel Research 64 (2008) 1225-1230.
[2] E.L. Salih, L. Gardner, D.A. Nethercot, " Numerical study of stainless steel gusset plate connections", Engineering Structures 49 (2013) 448–464.
[3] Eunsoo Choi, Young-Soo Chung, Kyoungsoo Park, Jong-Su Jeon, "Effect of steel wrapping jackets on the bond strength of concrete and the lateral performance of circular RC columns", Engineering Structures 48 (2013) 43–54.
[4] Graham Gedge, "Structural uses of stainless steel - buildings and civil engineering", Journal of Constructional Steel Research 64 (2008) 1194-1198.
[5] J . R. Davis, ASM Specialty Handbooks -Stainless Steel, Second Printing,January, pp. 13-35, 1996
[6]楊寶旺,雷敏宏,廖德章,化學(上),教育部審定版,高立圖書有限公司,頁碼:31,民國73 年,5 月
[7] Robert E. Reed-Hill, et al., Physical Metallurgy Principles,劉偉隆等譯,第三版,物理冶金,全華科技圖書有限公司,台北市,頁碼:1(6-9),19(1-4),民國93 年
[8] 楊慶彬, 第八章鋼之熱處理,改進教學計畫編號:教改進-97C-003
[9] Ferrite content in stainless steel and embrittlement
[10] J.R. Davis,ASM International Handbook Committee -Stainless Steel,P105-P119,1996
[11] 22. MUNTEANU, Al., RECENT, Vol. 9, No. 1(22), 2008, p. 59-65.
[12] Marina Knyazeva • Michael Pohl, Duplex Steels. Part II: Carbides and Nitrides, Metallogr. Microstruct. Anal. (2013) 2:343–351
[13] YINHUI YANG and HAO QIAN, Investigation on Aging σ-Phase Precipitation Kinetics and Pitting Corrosion of 22 Pct Cr Economical Duplex Stainless Steel with Mn Addition, Metallurgical and Materials Transactions A, Volume 49, Issue 8, pp.3184-3197
[14] P. FERRO and F. BONOLLOA Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels, Metallurgical and Materials Transactions A,April 2012, Volume 43, Issue 4, pp 1109–1116
[15] Xingguo Fenga,b,c, Xiangying Zhanga, Yiwen Xua, Ruilong Shia, Xiangyu Lua,Leyuan Zhanga, Jing Zhanga, Da Chena, Corrosion behavior of deformed low-nickel stainless steel in groundwater solution, Engineering Failure Analysis 98 (2019) 49–57
[16] Zhuang Li, Di Wu, Wei Lv, Shao Pu Kang, Zhen Zheng, Effects of Rare Earth Metals on Steel Microstructures, Applied Mechanics and Materials (Volume 377), p128-p132
[17] G. Blanco, A. Bautista, H. Takenouti, EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions, Cement Concr.
Comp. 28 (2006) 212–219.
[18] M. Criado, D. Bastidas, S. Fajardo, A. Fernández-Jiménez, J. Bastidas, Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash
mortars, Cement Concr. Comp. 33 (2011) 644–652.
[19] S. Fajardo, D. Bastidas, M. Criado, M. Romero, J. Bastidas, Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution,
Constr. Build. Mater. 25 (2011) 4190–4196.
[20] Robertson I, Sofronis P, Nagao A, Martin M, Wang S. Hydrogen embrittlement understood. Met Mat Trans B 2015;46B:1085e103.
[21] Kumar Dwivedi S, Vishwakarma M. Hydrogen embrittlement in different materials: a review. Int J Hydrogen Energy 2018;43:21603e16.
[22] Chandler WT, Walter RJ. Effects of high pressure hydrogen on metals at ambient temperature. NASA-CR-102425, R-7780- 1, Rocket Calif; 1969.
[23] Martı´n M, Weber S, Izawa C, Wagner S, Pundt A, Theisen W. Influence of machining-induced martensite on hydrogenassisted fracture of AISI type 304 austenitic stainless steel. Int J Hydrogen Energy 2011;36:11195.
[24] Perng TP, Altstetter CJ. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels. Metall Trans A 1987;18:123.
[25] Mine Y, Narazaki C, Murakami K, Matsuoka S, Murakami Y. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth. Int J Hydrogen Energy 2009;34:1097.
[26] A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed. (New York: John Wiley & Sons, 1996).
[27] P.C. Pistorius, M. du Toit, “Low-Nickel Austenitic Stainless Steels: Metallurgical Constraints,” 12th Int. Ferroalloys Congress, held June 6–9, 2010 (Helsinki, Finland: Outotec Oyj, 2010), p. 911.
[28] H. Hännimen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, J. Mater. Process. Tech. 117 (2001): p. 424
[29] H. Wen-Tai and R.W.K. Honeycombe: Mater. Sci. Technol., 1985, vol. 1, pp. 385–89.
[30] X.Q. Wu, H.M. Jing, Y.G. Zheng, Z.M. Yao, W. Ke, and Z.Q. Hu: Mater. Sci. Eng. A, 2000, vol. A293, pp. 252–60.
[31] M. Ekstro¨m and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616, pp. 78–87.
[32]J. Menzel, W. Krschner, G. Stein, ISIJ Int. 36 (1996): p. 893. 7. M. Sumita, T. Hanava, S.H. Teoh, Mat. Sci. Eng. C 24 (2004): p. 753.
[33] Yong-Bok Lee, Dong-Jin Park, Tae Ho Kim, Kyuho Sim,Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings, Journal of Engineering for Gas Turbines and Power, 2012 by ASME,MARCH 2012, Vol. 134 / 032506-1~032506-11
[34] Simon L. Narasimhan, Sinharoy Shubhayu, Mark J. Birler, Ryuchiro Goto and Heron A. Rodrigues, Valve Guide for High Temperature Applications, SAE International Journal of Materials and Manufacturing Vol. 1, No. 1 (2009), pp. 516-520
[35] Narasimhan S. and Larson J. “Valve Gear and Materials” SAE paper No 851297, Society of Automotive Engineers, Warrendale , PA 1985
[36] Rodrigues H “ Sintered Valve Seat Inserts and Valve Guides: Factors affecting Design, Performance and Machinability” Proceedings of the International Symposium on Valve Train Systems Design and materials” edited by Bolton, H.A. and Larson, J.M., ASM International. Materials Park, OH, 1997.
[37] US Patent # 6,102,016 – August 15, 2000. Assignee: Eaton Corporation ( Cleveland, OH)
[38] 19.VOICULESCU, I., GEANTA, V., VASILE, I., M., Aliaje feroase pentru structuri sudate (Ferrous Alloys for Welded Structures), Ed. BREN, Bucharest, 2016, p. 212-279.
[39] Chintalapati, Pavan Morristown, NJ New Jersey 07962-2245 (US),Stainless steel alloys, turbochargers formed from the stainless steel alloys,and methods for manufacturing the same,europe,14152560.0,13.08.2014 Bulletin 2014/33
[40] VOICULESCU, I., GEANTA, V., VASILE, I., M., Aliaje feroase pentru
structuri sudate (Ferrous Alloys for Welded Structures), Ed. BREN, Bucharest, 2016, p. 212-279.
[41] P.J. Maziasz, R.W. Swindeman, J.P. Shingledecker, K.L. More, B.A. Pint, E. Lara-Curzio, and N.D. Evans, Improving High-Temperature Performance of Austenitic Stainless Steels for Advanced Microturbine Recuperators, pp. 1057-1073 in Parsons 2003: Engineering Issues in Turbine Machinery, Power Plants and Renewables, The Institute for Materials
[42] A. Martin, S. Bereswill , A. Kiefer, Material Specification BWS-GX40CrNiSiNb25-13 BWS 33028 steel casting pp.1-9,2017-08,BorgWarner
[43] T. Seifert, C. Schweizer, M. Schlesinger, M. Mo¨ ser, and M. Eibl:Int. J. Mater. Res., 2010, vol. 101, pp. 942–50.
[44] JISUNG YOO, WON-MI CHOI, BYEONG-JOO LEE, GI-YONG KIM, HYUNGJUN KIM, WON-DOO CHOI, YONG-JUN OH, and SUNGHAK LEE, Replacement of Ni by Mn in Commercial High-Ni Austenitic Cast Steels Used for High-Performance Turbocharger Housings, The Minerals, Metals & Materials Society and ASM International 2019
[45] K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.-J. Lee: J. Alloys Compd., 2010, vol. 505, pp. 217–23.
[46] H. Wen-Tai and R.W.K. Honeycombe: Mater. Sci. Technol., 1985, vol. 1, pp. 385–89.
[47] Y.-J. Kim, H. Jang, and Y.-J. Oh: Mater. Sci. Eng. A, 2009, vol. A526, pp. 244–49
[48] S.J. Ko and Y.-J. Kim: Mater. Sci. Eng. A, 2012, vol. 534, pp. 7–12.
[49] M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki, and K. Maruyam: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 162–68.
[50] R.L. Klueh, P.J. Maziasz, and E.H. Lee: Mater. Sci. Eng. A, 1987,vol. 102, pp. 115–24
[51] S. Jung, Y.H. Jo, C. Jeon, W.-M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang, and S. Lee: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 568–74.
[52] S.R. Chen, H.A. Davies, and W.T. Rainforth: Acta. Mater., 1999, vol. 47, pp. 4555–69.
[53] C.K. Kim, J.I. Park, J.H. Ryu, and S. Lee: Metall. Mater. Trans.A, 2004, vol. 35A, pp. 481–92.
[54] J.W. Park, H.C. Lee, and S. Lee: Metall. Mater. Trans. A, 1999,vol. 30A, pp. 399–409.
[55] A. Wiengmoon: Naresuan Univ. Eng. J., 2011, vol. 6, pp. 64–70.
[56] S.W. Kim, U.J. Lee, K.D. Woo, and D.K. Kim: Mater. Sci.Technol, 2003, vol. 19, pp. 1727–32.
[57] Y.J. Kang, J.C. Oh, H.C. Lee, and S. Lee: Metall. Mater. Trans.A, 2001, vol. 32, pp. 2515–25.
[58] A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, and N.Cheung: Met. Mater. Int., 2018, vol. 24, pp. 1058–76
[59] J.R. Davis: ASM Specialty Handbook—Stainless Steels, ASM International, Materials Park, OH, 1994, pp. 378–80.
[60] R. Peraldi and B.A. Pint: Oxid. Met., 2004, vol. 61, pp. 463–83.
[61] X. Peng, J. Yan, Y. Zhou, and F. Wang: Acta Mater., 2005, vol.53, pp. 5079–88.
[62] T. Ishitsuka and H. Mimura: JSME Int. J. A, 2002, vol. A45,pp. 110–17.
[63] M. Filipovic, Z. Kamberovic, M. Korac, and B. Jordovic: ISIJ Int., 2013, vol. 53, pp. 2160–66.
[64] S. Kheirandish: ISIJ Int., 2001, vol. 41, pp. 1502–09.
[65] M. Ekstro‥m and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616,pp. 78–87.
[66] N. Fujita, K. Ohmura, and A. Yamamoto: Mater. Sci. Eng. A,2003, vol. 351, pp. 272–81.
[67] Li Z, Gao Q, He B, et al. Microstructure and mechanical properties of 1Cr17Mn9Ni4N steel [J]. J. Iron Steel Res., 2005, 17(2): 68
[68] JIANG Yi,CHENG Manlang, JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming, Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed Low Nickel Austenitic Stainless Steel, ACTA METALLURGICA SINICA, Apr. 2020,Vol.56 No.4
[69] Mukherjee M, Pal T K. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels . Acta Metall. Sin. (Engl. Lett.), 2013,26: 206
[70] Srikanth S, Saravanan P, Sisodia S, et al. Metallurgical investigation into the incidence of delayed catastrophic cracking in low nickel austenitic stainless steel coils [J]. J. Fail. Anal. Prev., 2014, 14: 220
[71] Shin J H, Lee J, Min D J, et al. Solubility of nitrogen in high manganese steel (HMNS) melts: Interaction parameter between Mn and N [J]. Metall. Mater. Trans., 2011, 42B: 1081
[72] Lu S Y. Introduction to Stainless Steel [M]. Beijing: Chemical Industry,Press, 2013: 27
[73] Du D X, Fu R D, Li Y J, et al. Modification of the Hall-Patch equation for friction-stir-processing microstructures of high-nitrogen steel [J]. Mater. Sci. Eng, 2015, A640: 190
[74] Feichtinger H K, Stein G. Melting of high nitrogen steels [J]. Mater. Sci. Forum, 1999, 318-320: 261
[75] Xue R R, Song Z G, Zheng W J, et al. Effect of adding nitrogen on grain size and mechanical properties of 316L [J]. J. Iron Steel Res., 2013, 25(10): 36
[76] Deng Y H, Yang Y H, Cao J C, et al. Research on dynamic recrystallization behavior of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type duplex stainless steel [J]. Acta Metall. Sin., 2019, 55: 445
[77] Ma Y X. Research on microstructure and mechanism DBT of high nitrogenaustenitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2008
[78] Hua B D, Shen X S, Zhou D R, et al. On the distribution of chromium in the chromiumdepleted zone of a sensitized 18-8 stainless steels [J]. Acta Metall. Sin., 1965, 8: 98
[79] Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[80] Qin F M, Li Y J, Zhao X D, et al. Effect of nitrogen content on precipitation behavior and mechanical properties of Mn18Cr18N austenitic stainless steel [J]. Acta Metall. Sin., 2018, 54: 55
[81] Fang F, Li J Y, Wang Y D, et al. Microstructure and property of Cr18Mn6Ni4N nickel-saving austenite stainless steel [J]. J. Harbin Eng. Univ., 2015, (2): 276
[82] Jargelius R F A, Hertzman S, Symniotis E, et al. Evaluation of the EPR technique for measuring sensitization in type 304 stainless steel [J]. Corrosion, 1991, 47: 429
[83] Fang Z, Zhang L, Wu Y S, et al. Thioacetamide as an activator for the potentiodynamic reactivation method in evaluating susceptibility of type 304L stainless steel to intergranular corrosion [J]. Corrosion,1995, 51: 124
[84] Huang J H, Fu Y F. Pitting resistance equivalent (PRE) and super stainless steel for pressure vessels [J]. Press. Vessel Technol.,2013, 30(4): 41
[85] Huang M, Zhang T K, Lu S Y. Effect and ITS mechanism of nitrogen on pitting corrosion of austenitic stainless steel [J]. J. Iron Steel Res., 1991(Suppl.): 19
[86] Lu S Y. Super Stainless Steel and High Nickel Corrosion Resistant Alloy [M]. Beijing: Chemical Industry Press, 2012: 1
[87] Wu J. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999: 1
[88] Ishii K, Ishii T, Ota H. Ni-and Mo-free ferritic stainless steel with high corrosion resistance, JFE443CT [J]. JFE Technical Report,2008, (12): 39
[89] Velasco F, Ruiz-Román J M, Torralba J M, et al. Corrosion resistance of alloyed powder metallurgy austenitic stainless steels in acid solutions [J]. Br. Corros. J., 1996, 31: 295
[90] Jing Y X, Zhang Y, Dai A L, et al. Effect of copper on corrosion resistance of Cr-Mn stainless steel [J]. Corros. Prot., 2009, 30: 713
[91] Qin Z R, Jing Y Z, Dong Z A. The influence of copper content to the microstructure and corrosion behavior of cast stainless steel [J]. Shanghai Met., 1995, 17(5): 51
[92] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of coppercontaining antibacterial stainless steel [J]. Acta Metall.Sin., 2007, 43: 1065
[93] Comite Europeen de Normalisation, HEAT RESISTANT STEEL CASTINGS,EN 10295 : 2002
[94] Chih-Chun Hsieh and Weite Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels, ISRN Metallurgy Volume 2012, Article ID 732471, 16 pages
[95] New Series IV/19B,Landolt-Bornstein
[96] M. G. Fontana, Corrosion Engineering, 3rd Ed. Singapore: McGraw-Hill, 1987.
[97] Zhen Zhang,Zhengfei Hu,Microstructure evolution in HR3C austenitic steel during long-term creep at 650 °C, Materials Science & Engineering A 681 (2017) 74–84
[98] Li Jiang,Wen-Zhu Zhang,Zhou-Feng Xu, M2C and M6C carbide precipitation in Ni-Mo-Cr based superalloys containing silicon, Materials and Design 112 (2016) 300–308
[99] P.R.Rios,A.F.Padilha, Precipitation from Austenite, Encyclopedia of Materials: Science and Technology (Second Edition)2005, Pages 1-7
[100] Sha Liu,Yefei Zhou,XiaoleiXing, Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy, Scientific Reports volume 6, Article number: 32941 (2016)
[101] Donghui Wena, Beibei Jianga, Qing Wanga, Fengyun Yua, Xiaona Lia, Rui Tangb, Ruiqian Zhangb,Guoqing Chena, Chuang Donga, Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures, Materials & Design,Volume 128, 15 August 2017, Pages 34-46
[102] H.Y. Bor, “A Study on the Elevated Temperature Brittleness and Fracture Mechanism of Mar-M247 Superalloy”, 國立交通大學博士論文, 1998, pp.15.
[103] Chao-Nan Wei, Study of the Effects of Hot Isostatic Pressing and Carbon Content on the Microstructure and Mechanical Performance of Microcast CM-681LC Superalloy, 國立交通大學博士論文,2010,pp13 |