博碩士論文 107323102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.133.148.76
姓名 何旻璋(Min-Chang Ho)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 耐熱沃斯田鐵系不鏽鋼的機械性質 與抗腐蝕能力
(Mechanical properties and corrosion resistance of heat-resistant Austenitic stainless steel)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討EN系列和低鎳沃斯田鐵不鏽鋼分別在鑄態、熱循環及熱處理後的不鏽鋼機械性質與抗腐蝕能力的影響。實驗使用EN系列和低鎳沃斯田鐵不鏽鋼的拉伸試棒,分成鑄態、三次熱循環、十次熱循環及熱處理,再按照JIS Z2201 13B規範加工成拉伸試棒進行拉伸及量測,後續分析鑄態與熱循環及熱處理對材料微結構與機械性質的影響。

將拉伸試驗完的試棒縱剖進行研磨及拋光,利用光學顯微鏡(OM)觀察基地與析出物的微結構,並利用影像分析軟體分析碳化物顆粒的數量、尺寸及分佈,探討碳化物顆粒對合金機械性質的影響。透過掃描式電子顯微鏡(SEM),判斷析出物的類型,利用x光粉末繞射儀(XRD)所產生的繞射峰印證析出物的種類,以及利用恆電位儀分析試棒的抗腐蝕能力與腐蝕速率。

實驗結果顯示,全部試棒皆符合規範要求,其中常溫機械性質由於析出MC碳化物,以LNSS試棒8最為突出(YS:292MPa、UTS:499MPa及EL:29%);高溫機械性質以鎳含量較高的EN1.4848最佳(YS:30.9 MPa、UTS:32MPa及EL:51%);而經過三次熱循環後,回溶於基地的碳化物經過風冷後析出,使碳化物總顆粒數增加,高溫機械性質呈現提高的趨勢;當經過十次熱循環後,EN1.4849機械性質均提高,主因是碳化物總顆粒數經過三次熱循環後數量先增加後漸少,而熱循環後,碳化物在基地或晶界析出,會產生無析出帶(PFZ),無析出帶(PFZ)對EN系列和低鎳沃斯田鐵不鏽鋼機械性質與抗腐蝕能力影響最大,在晶界上連續分佈的析出物會降低沃斯田鐵不鏽鋼的延伸率及韌性。
摘要(英) This study investigated the effects of mechanical properties and corrosion resistance of EN series and low nickel stainless steels in as-cast, thermal cycling, and heat-treated steels, respectively. EN series and low nickel stainless steel tensile test were used in the experiment, divided into as-cast, three thermal cycles, ten thermal cycles and heat treatment, and then processed into tensile test according to JIS Z2201 13B specifications for stretching and volume measurement. Subsequently,analysed the effect of as-cast and thermal cycling and heat treatment on the microstructure and mechanical properties of the material.

Grinded and polished the longitudinal section of the sample after the tensile test, observed the microstructure of the base and precipitates with an optical microscope (OM), and analyzed the number, size and distribution of carbide particles using image analysis software to research carbide particles effect on the mechanical properties of the alloy. Through scanning electron microscopy (SEM), determined the type of precipitate, used the diffraction peak produced by X-ray powder diffractometer (XRD) to confirm the type of precipitate, and use the potentiostat to analyze the corrosion resistance and the speed of the corrosion rate.

The experimental results showed that all the test bars meet the requirements of the specification, among which the LNSS test bar 8 is the most prominent at room temperature mechanical properties (YS: 292MPa, UTS: 499MPa and EL: 29%); the high temperature mechanical properties are the best with EN1.4848 (30.9 MPa) , UTS: 32MPa and EL: 51%); What’s more, after three thermal cycles, the mechanical properties of high temperature showed an increasing trend; after ten thermal cycles, the mechanical properties of EN1.4849 all improved.The main reason is that after three thermal cycles,the total number of carbide particles first increases and then decreases. After thermal cycling, carbides precipitate at the base or grain boundaries, which will produce precipitation free zone (PFZ).PFZ has the greatest influence on the mechanical properties and corrosion resistance of EN series and low nickel stainless steel, and the continuous distribution of precipitates on the grain boundaries will reduce the elongation and toughness of the stainless steel.
關鍵字(中) ★ 低鎳沃斯田鐵不鏽鋼
★ 碳化物
★ 機械性質
★ 無析出帶(PFZ)
★ 抗腐蝕性
關鍵字(英) ★ Low nickel stainless steel
★ carbide
★ mechanical properties
★ precipitation free zone (PFZ)
★ corrosion resistance
論文目次 摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VIII
第一章 前言 1
第二章 不鏽鋼介紹 2
2-1 不鏽鋼種類 2
2-1-1. 沃斯田鐵系不鏽鋼 3
2-1-2. 肥粒鐵系不鏽鋼 3
2-1-3. 麻田散鐵系不鏽鋼 3
2-1-4. 雙相型不鏽鋼 3
2-1-5. 析出硬化型不鏽鋼 4
2-2 鐵;鉻;鎳;碳原子之晶體結構 4
2-3 材料熱處理與連續冷卻相變化介紹 4
2-4 不鏽鋼微結構與Schaeffler diagram 6
第三章 文獻回顧 7
3-1 常見的沃斯田鐵不鏽鋼 7
3-2 沃斯田鐵不鏽鋼機械性質 8
3-3 汽車用耐熱不鏽鋼鑄件 9
3-3-1 Fe-Cu-C合金 10
3-3-2 V-605合金 10
3-3-3 HK30合金、K273及EN 1.4848合金 12
3-3-4 BWS 33028合金 16
3-3-5 DIN 1.4849合金 18
3-3-6 低鎳沃斯田鐵不鏽鋼合金 25
3-4 歐規(EN)沃斯田鐵系不鏽鋼介紹 34
3-5 不鏽鋼析出物結構介紹 35
3-5-1 脆化相 σ phase 35
3-5-2 脆化相 CBCC phase 37
3-5-3 碳化物 M23C6 37
3-5-4 碳化物 M7C3 38
3-5-5 碳化物 MC 39
3-5-6 碳化物 M6C 40
第四章 實驗方法與步驟 42
4-1. 實驗材料 42
4-2. 實驗用設備與儀器介紹 45
4-3. 試棒尺寸與測試條件 46
4-4. 實驗步驟 47
第五章 結果與討論 51
5-1. 鑄態(EN系列)沃斯田鐵系不鏽鋼常溫與高溫拉伸性質及抗腐蝕能力 51
5-1-1. 鑄態(EN系列)沃斯田鐵系不鏽鋼機械性質 51
5-1-2. 鑄態(EN系列)沃斯田鐵系不鏽鋼金相與微結構 56
5-1-3. 鑄態(EN系列)沃斯田鐵系不鏽鋼抗腐蝕能力 68
5-1-4. 鑄態(EN系列)沃斯田鐵系不鏽鋼鑄件品質綜論 70
5-2. 鑄態低鎳沃斯田鐵系不鏽鋼常溫與高溫拉伸性質及抗腐蝕能力 72
5-2-1. 鑄態低鎳沃斯田鐵系不鏽鋼機械性質 72
5-2-2. 鑄態低鎳沃斯田鐵系不鏽鋼金相與微結構觀察 76
5-2-3. 鑄態低鎳沃斯田鐵系不鏽鋼抗腐蝕能力的分析 85
5-2-4. 鑄態低鎳沃斯田鐵系不鏽鋼鑄件品質綜論 88
5-3. 熱循環對EN系列與低鎳沃斯田鐵不鏽鋼拉伸性質及抗腐蝕能力的影響   89
5-3-1. 熱循環對機械性質的影響 89
5-3-2. 熱循環對金相與微結構的影響 93
5-3-3. 熱循環對抗腐蝕能力的影響 111
5-3-4. 熱循環對EN系列與低鎳沃斯田鐵不鏽鋼不鏽鋼鑄件品質綜論 115
5-4. 熱處理對低鎳沃斯田鐵系不鏽鋼拉伸性質及抗腐蝕能力的影響 117
5-4-1. 熱處理對機械性質的影響 117
5-4-2. 熱處理對金相與微結構的影響 121
第六章 綜論 123
6-1. 鑄態(EN系列)與低鎳沃斯田鐵不鏽鋼鑄件品質綜論 123
6-2. 熱循環和熱處理後(EN系列)與低鎳沃斯田鐵不鏽鋼鑄件品質綜論 124
6-3. 最新耐熱沃斯田鐵系不鏽鋼的發展 127
第七章 結論 129
參考文獻 131
參考文獻 [1] Ben Young, "Experimental and numerical investigation of high strength stainless steel structures", Journal of Constructional Steel Research 64 (2008) 1225-1230.
[2] E.L. Salih, L. Gardner, D.A. Nethercot, " Numerical study of stainless steel gusset plate connections", Engineering Structures 49 (2013) 448–464.
[3] Eunsoo Choi, Young-Soo Chung, Kyoungsoo Park, Jong-Su Jeon, "Effect of steel wrapping jackets on the bond strength of concrete and the lateral performance of circular RC columns", Engineering Structures 48 (2013) 43–54.
[4] Graham Gedge, "Structural uses of stainless steel - buildings and civil engineering", Journal of Constructional Steel Research 64 (2008) 1194-1198.
[5] J . R. Davis, ASM Specialty Handbooks -Stainless Steel, Second Printing,January, pp. 13-35, 1996
[6]楊寶旺,雷敏宏,廖德章,化學(上),教育部審定版,高立圖書有限公司,頁碼:31,民國73 年,5 月
[7] Robert E. Reed-Hill, et al., Physical Metallurgy Principles,劉偉隆等譯,第三版,物理冶金,全華科技圖書有限公司,台北市,頁碼:1(6-9),19(1-4),民國93 年
[8] 楊慶彬, 第八章鋼之熱處理,改進教學計畫編號:教改進-97C-003
[9] Ferrite content in stainless steel and embrittlement
[10] J.R. Davis,ASM International Handbook Committee -Stainless Steel,P105-P119,1996
[11] 22. MUNTEANU, Al., RECENT, Vol. 9, No. 1(22), 2008, p. 59-65.
[12] Marina Knyazeva • Michael Pohl, Duplex Steels. Part II: Carbides and Nitrides, Metallogr. Microstruct. Anal. (2013) 2:343–351
[13] YINHUI YANG and HAO QIAN, Investigation on Aging σ-Phase Precipitation Kinetics and Pitting Corrosion of 22 Pct Cr Economical Duplex Stainless Steel with Mn Addition, Metallurgical and Materials Transactions A, Volume 49, Issue 8, pp.3184-3197
[14] P. FERRO and F. BONOLLOA Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels, Metallurgical and Materials Transactions A,April 2012, Volume 43, Issue 4, pp 1109–1116
[15] Xingguo Fenga,b,c, Xiangying Zhanga, Yiwen Xua, Ruilong Shia, Xiangyu Lua,Leyuan Zhanga, Jing Zhanga, Da Chena, Corrosion behavior of deformed low-nickel stainless steel in groundwater solution, Engineering Failure Analysis 98 (2019) 49–57
[16] Zhuang Li, Di Wu, Wei Lv, Shao Pu Kang, Zhen Zheng, Effects of Rare Earth Metals on Steel Microstructures, Applied Mechanics and Materials (Volume 377), p128-p132
[17] G. Blanco, A. Bautista, H. Takenouti, EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions, Cement Concr.
Comp. 28 (2006) 212–219.
[18] M. Criado, D. Bastidas, S. Fajardo, A. Fernández-Jiménez, J. Bastidas, Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash
mortars, Cement Concr. Comp. 33 (2011) 644–652.
[19] S. Fajardo, D. Bastidas, M. Criado, M. Romero, J. Bastidas, Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution,
Constr. Build. Mater. 25 (2011) 4190–4196.
[20] Robertson I, Sofronis P, Nagao A, Martin M, Wang S. Hydrogen embrittlement understood. Met Mat Trans B 2015;46B:1085e103.
[21] Kumar Dwivedi S, Vishwakarma M. Hydrogen embrittlement in different materials: a review. Int J Hydrogen Energy 2018;43:21603e16.
[22] Chandler WT, Walter RJ. Effects of high pressure hydrogen on metals at ambient temperature. NASA-CR-102425, R-7780- 1, Rocket Calif; 1969.
[23] Martı´n M, Weber S, Izawa C, Wagner S, Pundt A, Theisen W. Influence of machining-induced martensite on hydrogenassisted fracture of AISI type 304 austenitic stainless steel. Int J Hydrogen Energy 2011;36:11195.
[24] Perng TP, Altstetter CJ. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels. Metall Trans A 1987;18:123.
[25] Mine Y, Narazaki C, Murakami K, Matsuoka S, Murakami Y. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth. Int J Hydrogen Energy 2009;34:1097.
[26] A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed. (New York: John Wiley & Sons, 1996).
[27] P.C. Pistorius, M. du Toit, “Low-Nickel Austenitic Stainless Steels: Metallurgical Constraints,” 12th Int. Ferroalloys Congress, held June 6–9, 2010 (Helsinki, Finland: Outotec Oyj, 2010), p. 911.
[28] H. Hännimen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, J. Mater. Process. Tech. 117 (2001): p. 424
[29] H. Wen-Tai and R.W.K. Honeycombe: Mater. Sci. Technol., 1985, vol. 1, pp. 385–89.
[30] X.Q. Wu, H.M. Jing, Y.G. Zheng, Z.M. Yao, W. Ke, and Z.Q. Hu: Mater. Sci. Eng. A, 2000, vol. A293, pp. 252–60.
[31] M. Ekstro¨m and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616, pp. 78–87.
[32]J. Menzel, W. Krschner, G. Stein, ISIJ Int. 36 (1996): p. 893. 7. M. Sumita, T. Hanava, S.H. Teoh, Mat. Sci. Eng. C 24 (2004): p. 753.
[33] Yong-Bok Lee, Dong-Jin Park, Tae Ho Kim, Kyuho Sim,Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings, Journal of Engineering for Gas Turbines and Power, 2012 by ASME,MARCH 2012, Vol. 134 / 032506-1~032506-11
[34] Simon L. Narasimhan, Sinharoy Shubhayu, Mark J. Birler, Ryuchiro Goto and Heron A. Rodrigues, Valve Guide for High Temperature Applications, SAE International Journal of Materials and Manufacturing Vol. 1, No. 1 (2009), pp. 516-520
[35] Narasimhan S. and Larson J. “Valve Gear and Materials” SAE paper No 851297, Society of Automotive Engineers, Warrendale , PA 1985
[36] Rodrigues H “ Sintered Valve Seat Inserts and Valve Guides: Factors affecting Design, Performance and Machinability” Proceedings of the International Symposium on Valve Train Systems Design and materials” edited by Bolton, H.A. and Larson, J.M., ASM International. Materials Park, OH, 1997.
[37] US Patent # 6,102,016 – August 15, 2000. Assignee: Eaton Corporation ( Cleveland, OH)
[38] 19.VOICULESCU, I., GEANTA, V., VASILE, I., M., Aliaje feroase pentru structuri sudate (Ferrous Alloys for Welded Structures), Ed. BREN, Bucharest, 2016, p. 212-279.
[39] Chintalapati, Pavan Morristown, NJ New Jersey 07962-2245 (US),Stainless steel alloys, turbochargers formed from the stainless steel alloys,and methods for manufacturing the same,europe,14152560.0,13.08.2014 Bulletin 2014/33
[40] VOICULESCU, I., GEANTA, V., VASILE, I., M., Aliaje feroase pentru
structuri sudate (Ferrous Alloys for Welded Structures), Ed. BREN, Bucharest, 2016, p. 212-279.
[41] P.J. Maziasz, R.W. Swindeman, J.P. Shingledecker, K.L. More, B.A. Pint, E. Lara-Curzio, and N.D. Evans, Improving High-Temperature Performance of Austenitic Stainless Steels for Advanced Microturbine Recuperators, pp. 1057-1073 in Parsons 2003: Engineering Issues in Turbine Machinery, Power Plants and Renewables, The Institute for Materials
[42] A. Martin, S. Bereswill , A. Kiefer, Material Specification BWS-GX40CrNiSiNb25-13 BWS 33028 steel casting pp.1-9,2017-08,BorgWarner
[43] T. Seifert, C. Schweizer, M. Schlesinger, M. Mo¨ ser, and M. Eibl:Int. J. Mater. Res., 2010, vol. 101, pp. 942–50.
[44] JISUNG YOO, WON-MI CHOI, BYEONG-JOO LEE, GI-YONG KIM, HYUNGJUN KIM, WON-DOO CHOI, YONG-JUN OH, and SUNGHAK LEE, Replacement of Ni by Mn in Commercial High-Ni Austenitic Cast Steels Used for High-Performance Turbocharger Housings, The Minerals, Metals & Materials Society and ASM International 2019
[45] K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.-J. Lee: J. Alloys Compd., 2010, vol. 505, pp. 217–23.
[46] H. Wen-Tai and R.W.K. Honeycombe: Mater. Sci. Technol., 1985, vol. 1, pp. 385–89.
[47] Y.-J. Kim, H. Jang, and Y.-J. Oh: Mater. Sci. Eng. A, 2009, vol. A526, pp. 244–49
[48] S.J. Ko and Y.-J. Kim: Mater. Sci. Eng. A, 2012, vol. 534, pp. 7–12.
[49] M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki, and K. Maruyam: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 162–68.
[50] R.L. Klueh, P.J. Maziasz, and E.H. Lee: Mater. Sci. Eng. A, 1987,vol. 102, pp. 115–24
[51] S. Jung, Y.H. Jo, C. Jeon, W.-M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang, and S. Lee: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 568–74.
[52] S.R. Chen, H.A. Davies, and W.T. Rainforth: Acta. Mater., 1999, vol. 47, pp. 4555–69.
[53] C.K. Kim, J.I. Park, J.H. Ryu, and S. Lee: Metall. Mater. Trans.A, 2004, vol. 35A, pp. 481–92.
[54] J.W. Park, H.C. Lee, and S. Lee: Metall. Mater. Trans. A, 1999,vol. 30A, pp. 399–409.
[55] A. Wiengmoon: Naresuan Univ. Eng. J., 2011, vol. 6, pp. 64–70.
[56] S.W. Kim, U.J. Lee, K.D. Woo, and D.K. Kim: Mater. Sci.Technol, 2003, vol. 19, pp. 1727–32.
[57] Y.J. Kang, J.C. Oh, H.C. Lee, and S. Lee: Metall. Mater. Trans.A, 2001, vol. 32, pp. 2515–25.
[58] A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, and N.Cheung: Met. Mater. Int., 2018, vol. 24, pp. 1058–76
[59] J.R. Davis: ASM Specialty Handbook—Stainless Steels, ASM International, Materials Park, OH, 1994, pp. 378–80.
[60] R. Peraldi and B.A. Pint: Oxid. Met., 2004, vol. 61, pp. 463–83.
[61] X. Peng, J. Yan, Y. Zhou, and F. Wang: Acta Mater., 2005, vol.53, pp. 5079–88.
[62] T. Ishitsuka and H. Mimura: JSME Int. J. A, 2002, vol. A45,pp. 110–17.
[63] M. Filipovic, Z. Kamberovic, M. Korac, and B. Jordovic: ISIJ Int., 2013, vol. 53, pp. 2160–66.
[64] S. Kheirandish: ISIJ Int., 2001, vol. 41, pp. 1502–09.
[65] M. Ekstro‥m and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616,pp. 78–87.
[66] N. Fujita, K. Ohmura, and A. Yamamoto: Mater. Sci. Eng. A,2003, vol. 351, pp. 272–81.
[67] Li Z, Gao Q, He B, et al. Microstructure and mechanical properties of 1Cr17Mn9Ni4N steel [J]. J. Iron Steel Res., 2005, 17(2): 68
[68] JIANG Yi,CHENG Manlang, JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming, Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed Low Nickel Austenitic Stainless Steel, ACTA METALLURGICA SINICA, Apr. 2020,Vol.56 No.4
[69] Mukherjee M, Pal T K. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels . Acta Metall. Sin. (Engl. Lett.), 2013,26: 206
[70] Srikanth S, Saravanan P, Sisodia S, et al. Metallurgical investigation into the incidence of delayed catastrophic cracking in low nickel austenitic stainless steel coils [J]. J. Fail. Anal. Prev., 2014, 14: 220
[71] Shin J H, Lee J, Min D J, et al. Solubility of nitrogen in high manganese steel (HMNS) melts: Interaction parameter between Mn and N [J]. Metall. Mater. Trans., 2011, 42B: 1081
[72] Lu S Y. Introduction to Stainless Steel [M]. Beijing: Chemical Industry,Press, 2013: 27
[73] Du D X, Fu R D, Li Y J, et al. Modification of the Hall-Patch equation for friction-stir-processing microstructures of high-nitrogen steel [J]. Mater. Sci. Eng, 2015, A640: 190
[74] Feichtinger H K, Stein G. Melting of high nitrogen steels [J]. Mater. Sci. Forum, 1999, 318-320: 261
[75] Xue R R, Song Z G, Zheng W J, et al. Effect of adding nitrogen on grain size and mechanical properties of 316L [J]. J. Iron Steel Res., 2013, 25(10): 36
[76] Deng Y H, Yang Y H, Cao J C, et al. Research on dynamic recrystallization behavior of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type duplex stainless steel [J]. Acta Metall. Sin., 2019, 55: 445
[77] Ma Y X. Research on microstructure and mechanism DBT of high nitrogenaustenitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2008
[78] Hua B D, Shen X S, Zhou D R, et al. On the distribution of chromium in the chromiumdepleted zone of a sensitized 18-8 stainless steels [J]. Acta Metall. Sin., 1965, 8: 98
[79] Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[80] Qin F M, Li Y J, Zhao X D, et al. Effect of nitrogen content on precipitation behavior and mechanical properties of Mn18Cr18N austenitic stainless steel [J]. Acta Metall. Sin., 2018, 54: 55
[81] Fang F, Li J Y, Wang Y D, et al. Microstructure and property of Cr18Mn6Ni4N nickel-saving austenite stainless steel [J]. J. Harbin Eng. Univ., 2015, (2): 276
[82] Jargelius R F A, Hertzman S, Symniotis E, et al. Evaluation of the EPR technique for measuring sensitization in type 304 stainless steel [J]. Corrosion, 1991, 47: 429
[83] Fang Z, Zhang L, Wu Y S, et al. Thioacetamide as an activator for the potentiodynamic reactivation method in evaluating susceptibility of type 304L stainless steel to intergranular corrosion [J]. Corrosion,1995, 51: 124
[84] Huang J H, Fu Y F. Pitting resistance equivalent (PRE) and super stainless steel for pressure vessels [J]. Press. Vessel Technol.,2013, 30(4): 41
[85] Huang M, Zhang T K, Lu S Y. Effect and ITS mechanism of nitrogen on pitting corrosion of austenitic stainless steel [J]. J. Iron Steel Res., 1991(Suppl.): 19
[86] Lu S Y. Super Stainless Steel and High Nickel Corrosion Resistant Alloy [M]. Beijing: Chemical Industry Press, 2012: 1
[87] Wu J. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999: 1
[88] Ishii K, Ishii T, Ota H. Ni-and Mo-free ferritic stainless steel with high corrosion resistance, JFE443CT [J]. JFE Technical Report,2008, (12): 39
[89] Velasco F, Ruiz-Román J M, Torralba J M, et al. Corrosion resistance of alloyed powder metallurgy austenitic stainless steels in acid solutions [J]. Br. Corros. J., 1996, 31: 295
[90] Jing Y X, Zhang Y, Dai A L, et al. Effect of copper on corrosion resistance of Cr-Mn stainless steel [J]. Corros. Prot., 2009, 30: 713
[91] Qin Z R, Jing Y Z, Dong Z A. The influence of copper content to the microstructure and corrosion behavior of cast stainless steel [J]. Shanghai Met., 1995, 17(5): 51
[92] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of coppercontaining antibacterial stainless steel [J]. Acta Metall.Sin., 2007, 43: 1065
[93] Comite Europeen de Normalisation, HEAT RESISTANT STEEL CASTINGS,EN 10295 : 2002
[94] Chih-Chun Hsieh and Weite Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels, ISRN Metallurgy Volume 2012, Article ID 732471, 16 pages
[95] New Series IV/19B,Landolt-Bornstein
[96] M. G. Fontana, Corrosion Engineering, 3rd Ed. Singapore: McGraw-Hill, 1987.
[97] Zhen Zhang,Zhengfei Hu,Microstructure evolution in HR3C austenitic steel during long-term creep at 650 °C, Materials Science & Engineering A 681 (2017) 74–84
[98] Li Jiang,Wen-Zhu Zhang,Zhou-Feng Xu, M2C and M6C carbide precipitation in Ni-Mo-Cr based superalloys containing silicon, Materials and Design 112 (2016) 300–308
[99] P.R.Rios,A.F.Padilha, Precipitation from Austenite, Encyclopedia of Materials: Science and Technology (Second Edition)2005, Pages 1-7
[100] Sha Liu,Yefei Zhou,XiaoleiXing, Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy, Scientific Reports volume 6, Article number: 32941 (2016)
[101] Donghui Wena, Beibei Jianga, Qing Wanga, Fengyun Yua, Xiaona Lia, Rui Tangb, Ruiqian Zhangb,Guoqing Chena, Chuang Donga, Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures, Materials & Design,Volume 128, 15 August 2017, Pages 34-46
[102] H.Y. Bor, “A Study on the Elevated Temperature Brittleness and Fracture Mechanism of Mar-M247 Superalloy”, 國立交通大學博士論文, 1998, pp.15.
[103] Chao-Nan Wei, Study of the Effects of Hot Isostatic Pressing and Carbon Content on the Microstructure and Mechanical Performance of Microcast CM-681LC Superalloy, 國立交通大學博士論文,2010,pp13
指導教授 施登士(Teng-Shih Shih) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明