參考文獻 |
[1] 鄭慧筠,2015,「地震誘發楔型滑動之Newmark位移分析-以大光包山崩為例」,國立中央大學應用地質所,碩士論文。
[2] 賴俊融,2015,「單速與不同頻率變速旋剪試驗條件下高嶺土之速度與位移相依摩擦律」,國立中央大學應用地質所,碩士論文。
[3] 許暢軒,2016,「地震誘發遽變式山崩之臨界位移」,國立中央大學應用地質所,碩士論文。
[4] 李羿葦,2017,「不同排水速度/滑移速度條件下高嶺土之摩擦特性探討」,國立中央大學應用地質所,碩士論文。
[5] Bhat, D.R., 2013. Effect of shearing rate on residual strength of Kaolin clay. Electron. Journal of Geotechnical Engineering, 18, 1387-1396.
[6] Bhat, D.R., Bhandari, N.P., Yatabe, R., 2013. Method of residual-state creep test to understand the creeping behavior of landslide soils. Landslide Science and Practice, 2, 635-642.
[7] Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature, 471, 494-497.
[8] Duong, N., Suzuki, M., Hai, N., 2018. Rate and acceleration effects on residual strength of Kaolin and kaolin-bentonite mixtures in ring shearing. Soils Found, 58 (5), 1153-1172.
[9] Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.
[10] Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., 2010. Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova, 22(5), 347-353.
[11] Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110, B05202.
[12] Hirose, T., Shimamoto, T., 2005. Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bulletin of the Seismological Society of America, 95, 1666-1673.
[13] Ho , C.S., 1990. General Geology, the third edition, Wu-Nan Culture Enterprise, Taipei
[14] Kitajima, H., Chester, J.S., Chester, F. M., Shimamoto, T., 2010. High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research, 115, B08408.
[15] Lemos, L.J.L., 2003. Shear behavior of pre-existing shear zones under fast loading-insights on the landslide motion. Proceeding International Workshop on Occurrence and Mechanisms of Flow-like Landslides in Natural Slopes and Earth Fills, 229-236.
[16] Leroueli, S., 2001. Natural slopes and cuts: movement and failure mechanisms. Geotechnique, 51(3), 197-243.
[17] Mizoguchi, K., Hirose, T. Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308.
[18] Ö lmez, M. S., 2008. Shear Strength Behavior of Sand-clay Mixtures, Middle East Technical University, PhD Thesis.
[19] Pham, Q.V., 2019. Velocity-dependent Frictional Properties of Kaolinite Clay under Different Drainage Conditions with Temperature Measurement. National Central University, Master Thesis.
[20] Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming pelagic sediments at the Japan Trench: Implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake. Earth Planets Space, 66(1), 65.
[21] Scaring, G., Di Maio, C., 2016. Influence of displacement rate on residual shear strength of clays. The 4th Italian Workshop on Landslides Procedia Earth and Planetary Science, 137-145.
[22] Shimamoto, T., 1994. A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. Journal of Tectonic Research. Group of Japan, 39, 65-78.
[23] Skempton, A.W., 1985. Residual strength of clays in landslides, foldedstrata and the laboratory. Geotechnique, 35(1), 3-18.
[24] Suzuki, M., Umezaki, T., Takahara, H., 2012. Fast and cyclic shearing of cemented sand in earthquake induced landslide. Proc. 15th World Conference on Earthquake Engineering, Libosa.
[25] Tika, T.E., Hutchison, J.N., 1999. Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique, 49(1), 59-74.
[26] Tika, T.E., Vaughan, P.R., Lemos, L.J.L., 1996. Fast shearing of pre-existing shear zones in soils. Geotechnique, 46(2), 197-223.
[27] Togo, T., Ma, S.L., Hirose, T., 2011. High-velocity friction of faults: A review and implication for landslide studies. The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
[28] Togo, T., Shimamoto, T., Dong, J.J., Lee, C.T., Yang, C.M., 2014. Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi-Chi earthquake, as revealed by high-velocity friction experiments. Geophysical Research Letters, 41, 1907-1915.
[29] Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102(3), 204-248.
[30] Tsutsumi, A., Shimamoto, T., 1997. High-velocity frictional properties of gabbro. Geophysical Research Letters, 24, 443-467
[31] Wang, G., Suemine, A., Schulz, W.H., 2010. Shear rate displacement strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan. Earth Surface Process Landforms, 35(4), 407-416.
[32] White, W. A., 1949. Atterberg plastic limits of clay minerals, American Mineralogist, 34, 508-512.
[33] Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Engineering Geology, 182, 158-181. |