博碩士論文 107624005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.190.153.77
姓名 江宜佳(Yi-Chia Chiang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 氣乾高嶺土之速度-位移相依摩擦律
(Velocity-displacement dependent friction law of dry kaolinite.)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去許多研究指出粘土強度與滑移速度、位移量相關,然而,在相同速度與位移量條件下,氣乾高嶺土旋剪試驗結果常有不可忽略之差異。為釐清旋剪試驗強度量測結果產生差異之原因,本研究沿用過去試驗相同之氣乾高嶺土樣本,改變滑移速度(10^-7~1 m/s)與滑移距離進行旋剪試驗,以探討高嶺土於不同滑移速度條件下摩擦係數隨位移變化之曲線,並嘗試進行曲線型態分類,進一步對摩擦係數進行更細緻之定義。並以不同滑移速度下之氣乾高嶺土摩擦係數-位移曲線,結合氣乾高嶺土之穩態摩擦係數隨滑移速度變化之關係,建立氣乾高嶺土之速度-位移相依摩擦律。同時,本研究將重新分析前人試驗數據,以解決不同方式計算穩態摩擦係數造成估計值差異之問題。
研究結果發現,在相對低速情況下,前人利用旋剪試驗量測氣乾高嶺土摩擦係數時,剪位移經常不足而低估了穩態摩擦係數,並造成摩擦係數隨旋剪速度降低而降低之假象。根據本研究試驗結果顯示,若旋剪試驗剪位移能達穩態,則穩態摩擦係數在低於10^-4 m/s條件下(傳統土壤強度試驗之加載速率)變化不大(隨速度增加摩擦係數自0.36緩慢增加至0.42)。於10^-4~10^-2 m/s時,穩態摩擦係數有顯著的速度強化表現,由0.42增加至0.79。介於10^-2 與10^-1 m/s速度之間,穩態摩擦係數最大(0.90與0.97)。然而,速度大10^-1 m/s時,穩態摩擦係數則是隨速度增加有快速下降之趨勢(由0.89降至0.25)。根據旋剪試驗結果,本研究將高嶺土之摩擦係數-剪位移曲線型態依滑移速度分為三大類。第一類(10^-7~10^-6 m/s)和第三類(10^-2~1 m/s),高嶺土之摩擦係數均隨剪位移增加上升至一峰值後再弱化至穩態;第二類(10^-5~10^-3 m/s)之曲線型態則相對複雜,在摩擦係數達穩態值前有兩個峰值出現。因旋剪試驗由外至內滑移速度與剪位移並非均勻分布,因此,旋剪試驗所得摩擦係數-剪位移曲線實際上反映了滑動面所涵蓋不同速度、位移加權平均之結果,且到達穩態所需之剪位移量偏長,約為環剪試驗的6倍。10^-5~10^-3m/s條件下所得摩擦係數隨剪位移變化之複雜性與旋剪試驗此一限制相關。
摘要(英) Many previous studies have pointed out that the strength of clay is related to the shear rate and displacement. However, the rotary shear test results of dry kaolinite documented previously have non-negligible differences. In order to clarify the reasons for the differences of the strength measurements, this study conducted the rotary shear test of dry kaolinite under different shear rate (10^-7 m/s to 1 m/s) to obtain the friction coefficient - shear displacement curves. The analysis methods, holder friction corrections, and reproducibility were carefully checked.
Based on the measurements of this and previous studies via rotary shear tests, the friction coefficient - shear displacement curves can be categorized into three types. The type I (10^-7 m/s to 10^-6 m/s) and type III (10^-2 m/s to 1 m/s), the friction coefficient increases with the increasing shear displacement to a peak and then weakens to a steady state. For the type II under intermediate shear rate (10^-5 m/s to 10^-2 m/s), the friction coefficient - shear displacement curves are complicated. Two peaks appear before the friction coefficient reaches a steady-state value.
The testing results indicate the friction coefficient of kaolinite was underestimated under low shear rate previously using rotary shear tests for the shear displacement was insufficient to achieve steady state. That is, the steady-state friction coefficient is shear rate independent under 10^-4 m/s (the shear rate of traditional strength tests for soils), although the friction coefficient do increase slowly from 0.36 to 0.42 when the slip rate increased from 10-7 m/s to 10-4 m/s. Since the shear rate and shear displacement on the shear plane are not uniformly distributed for the rotary shear test, the friction coefficient-shear displacement curves are actually equivalent ones. Based on the friction coefficient - shear displacement curves under the shear rate from 3.3×10^-7 m/s to 3.3×10^-4 m/s of ring shear testing results collected from the literature, the shear displacement required to reach the steady-state for rotary shear test was evaluated in this study. It is found that the shear displacement required to reach steady state for rotary shear test is about 6 time longer than the one using ring shear test.
When the shear rate increased to 10^-4 to 10^-2 m/s, the steady-state friction coefficient increased significantly from 0.42 to 0.79 (rate strengthening). Between 10^-2 and 10^-1 m/s, the steady-state friction coefficient raised to 0.90 and 0.97. The steady-state friction coefficient dropped rapidly from 0.89 to 0.25 when the shear rate further increased from 10^-1 m/s to 1 m/s. Finally, based on the testing results, the velocity-displacement dependent friction law and related parameters of dry kaolinite was suggested.
關鍵字(中) ★ 氣乾高嶺土
★ 滑移速度
★ 剪位移量
★ 穩態摩擦係數
★ 速度位移相依摩擦律
關鍵字(英) ★ Dry kaolinite
★ shear rate
★ shear displacement
★ steady-state friction coefficient
★ rate-displacement dependent friction law
論文目次 摘要 I
Absrtact III
目錄 V
圖目錄 VIII
表目錄 XV
符號表 XVI
一、緒論 1
1.1 研究動機與目的 1
1.2 研究流程 3
二、文獻回顧 6
2.1 剪力試驗摩擦係數曲線型態 6
2.2 速度-位移相依摩擦律 10
2.2.1 位移相依摩擦律 10
2.2.2 速度相依摩擦律 13
2.2.3 速度-位移相依摩擦律 14
2.3 相關旋/環剪試驗 16
2.3.1 穩態摩擦係數隨滑移速度變化與試驗位移量 16
2.3.2 高嶺土剪力強度量測-環剪試驗結果 20
2.4鐵氟龍環摩擦力校正 22
三、研究方法 23
3.1 試驗樣品 23
3.2 低速至高速旋剪試驗 23
3.3 試驗流程 28
3.3.1 試體製備 28
3.3.2 試驗操作流程 28
3.4 鐵氟龍環摩擦力校正 30
3.5 試驗條件規劃 31
四、旋剪試驗結果 33
4.1 鐵氟龍環摩擦力校正 33
4.2 不同滑移速度下之氣乾高嶺土旋剪試驗結果 37
五、討論 54
5.1 影響穩態摩擦係數重複性之因素探討 54
5.1.1 鐵氟龍環校正結果一致性對穩態摩擦係數之影響 54
5.1.2 不同方式計算穩態摩擦係數之影響 57
5.1.3 剪位移量對穩態摩擦係數之影響 61
5.2 不同滑移速度區間之摩擦係數-剪位移曲線型態分類 71
5.3 不同滑移速度下之氣乾高嶺土穩態摩擦係數 75
5.4 氣乾高嶺土之速度-位移相依摩擦律 78
5.5 旋剪試驗所需長剪位移量探討與模擬計算 86
5.5.1 高嶺土之環/旋剪試驗條件差異 86
5.5.2 計算分析所得模擬旋剪試驗之結果探討 87
六、結論與建議 101
參考文獻 103
附錄一 107
附錄二 109
附錄三 113
附錄四 116
參考文獻 [1] 鄭慧筠,2015,「地震誘發楔型滑動之Newmark位移分析-以大光包山崩為例」,國立中央大學應用地質所,碩士論文。
[2] 賴俊融,2015,「單速與不同頻率變速旋剪試驗條件下高嶺土之速度與位移相依摩擦律」,國立中央大學應用地質所,碩士論文。
[3] 許暢軒,2016,「地震誘發遽變式山崩之臨界位移」,國立中央大學應用地質所,碩士論文。
[4] 李羿葦,2017,「不同排水速度/滑移速度條件下高嶺土之摩擦特性探討」,國立中央大學應用地質所,碩士論文。
[5] Bhat, D.R., 2013. Effect of shearing rate on residual strength of Kaolin clay. Electron. Journal of Geotechnical Engineering, 18, 1387-1396.
[6] Bhat, D.R., Bhandari, N.P., Yatabe, R., 2013. Method of residual-state creep test to understand the creeping behavior of landslide soils. Landslide Science and Practice, 2, 635-642.
[7] Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature, 471, 494-497.
[8] Duong, N., Suzuki, M., Hai, N., 2018. Rate and acceleration effects on residual strength of Kaolin and kaolin-bentonite mixtures in ring shearing. Soils Found, 58 (5), 1153-1172.
[9] Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.
[10] Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., 2010. Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova, 22(5), 347-353.
[11] Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110, B05202.
[12] Hirose, T., Shimamoto, T., 2005. Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bulletin of the Seismological Society of America, 95, 1666-1673.
[13] Ho , C.S., 1990. General Geology, the third edition, Wu-Nan Culture Enterprise, Taipei
[14] Kitajima, H., Chester, J.S., Chester, F. M., Shimamoto, T., 2010. High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research, 115, B08408.
[15] Lemos, L.J.L., 2003. Shear behavior of pre-existing shear zones under fast loading-insights on the landslide motion. Proceeding International Workshop on Occurrence and Mechanisms of Flow-like Landslides in Natural Slopes and Earth Fills, 229-236.
[16] Leroueli, S., 2001. Natural slopes and cuts: movement and failure mechanisms. Geotechnique, 51(3), 197-243.
[17] Mizoguchi, K., Hirose, T. Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308.
[18] Ö lmez, M. S., 2008. Shear Strength Behavior of Sand-clay Mixtures, Middle East Technical University, PhD Thesis.
[19] Pham, Q.V., 2019. Velocity-dependent Frictional Properties of Kaolinite Clay under Different Drainage Conditions with Temperature Measurement. National Central University, Master Thesis.
[20] Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming pelagic sediments at the Japan Trench: Implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake. Earth Planets Space, 66(1), 65.
[21] Scaring, G., Di Maio, C., 2016. Influence of displacement rate on residual shear strength of clays. The 4th Italian Workshop on Landslides Procedia Earth and Planetary Science, 137-145.
[22] Shimamoto, T., 1994. A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. Journal of Tectonic Research. Group of Japan, 39, 65-78.
[23] Skempton, A.W., 1985. Residual strength of clays in landslides, foldedstrata and the laboratory. Geotechnique, 35(1), 3-18.
[24] Suzuki, M., Umezaki, T., Takahara, H., 2012. Fast and cyclic shearing of cemented sand in earthquake induced landslide. Proc. 15th World Conference on Earthquake Engineering, Libosa.
[25] Tika, T.E., Hutchison, J.N., 1999. Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique, 49(1), 59-74.
[26] Tika, T.E., Vaughan, P.R., Lemos, L.J.L., 1996. Fast shearing of pre-existing shear zones in soils. Geotechnique, 46(2), 197-223.
[27] Togo, T., Ma, S.L., Hirose, T., 2011. High-velocity friction of faults: A review and implication for landslide studies. The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
[28] Togo, T., Shimamoto, T., Dong, J.J., Lee, C.T., Yang, C.M., 2014. Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi-Chi earthquake, as revealed by high-velocity friction experiments. Geophysical Research Letters, 41, 1907-1915.
[29] Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102(3), 204-248.
[30] Tsutsumi, A., Shimamoto, T., 1997. High-velocity frictional properties of gabbro. Geophysical Research Letters, 24, 443-467
[31] Wang, G., Suemine, A., Schulz, W.H., 2010. Shear rate displacement strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan. Earth Surface Process Landforms, 35(4), 407-416.
[32] White, W. A., 1949. Atterberg plastic limits of clay minerals, American Mineralogist, 34, 508-512.
[33] Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Engineering Geology, 182, 158-181.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明