博碩士論文 105624017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.129.71.14
姓名 洪世明(Shi-Ming Hong)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用孔隙率-有效應力關係曲線評估海岸山脈南段弧前盆地之地層侵蝕量
(Using porosity-effective stress relationship curve to evaluate the erosion amount of the fore-arc basin in the southern part of Coastal Range)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地層侵蝕量對於盆地演化歷史推測、造山帶演化推估、油氣成熟與遷徙的過程都是一個重要的參數。地層侵蝕量估計多使用地球物理、地球化學、地層對比等方法進行,但在海岸山脈弧前盆地(泰源與樂合盆地),因(1)地物井測與震測資料欠缺;(2)沉積物來源主要來自中央山脈,其帶來的高變質度沉積物嚴重干擾地球化學指標之測量;(3)地層受到大範圍的抬升與侵蝕,地層對比不易等三個限制,造成單一方法推估地層侵蝕量不確定性高。本研究於泰源盆地之馬達吉達溪剖面採集五個砂岩樣本、於樂合盆地之樂合溪剖面採集三個砂岩樣本,進行孔隙率-有效應力分析得出預壓密應力,並藉此計算地層侵蝕量。孔隙率-有效應力分析的原理基於顆粒沉積物在力學壓密過程中孔隙率的變化,若樣本受化學壓密則視為無效樣本,為增加成果的可信度,本研究將孔隙率實驗之砂岩樣本製作薄片進行觀察、並引用前人在此二研究區之鏡煤素反射率資料進行古地溫分析,確立孔隙率實驗之砂岩樣本的壓密型態。孔隙率-有效應力分析所得之地層侵蝕量計算成果將以地層對比與鏡煤素反射率分析進行限縮。成果顯示,馬達吉達溪剖面利用五個有效樣本獲得了709~2,248公尺的地層侵蝕量分析成果;地層對比成果顯示此研究區之地層侵蝕量下限為562公尺;鏡煤素反射率分析顯示,在無地溫異常之條件下,地層侵蝕量為3,688公尺。樂合溪剖面僅有一個有效樣本進行孔隙率-有效應力分析,獲得了1,186~2,162公尺的地層侵蝕量分析成果,而地層對比與鏡煤素反射率分析皆無法為此研究區限縮成果,使得本研究於樂合溪剖面獲得的成果仍有不確定性。
摘要(英) Erosion amount is an important parameter for prediction of evolution history of sedimentary basin, estimation of orogenic belt growth, and the process of organic material maturation and migration. Traditionally, the estimation of erosion amount is mostly performed by geophysical, geochemical, and stratigraphic contrast. However, in the fore-arc basins of the Coastal Range (Taiyuan and Loho Basin), due to (1) lack of logging and seismic data by geophysics; (2) the source of sediments is mainly from Central Mountain Range, the highly metamorphic sediments seriously interfere the measurement of geochemical indicators. (3) The area has large-scale uplift and erosion, stratigraphic contrast is hardly to be used. These three factors result in high uncertainty in the estimation of erosion amount from any single method. In this study, five sandstone samples were collected from Madagida section of the Taiyuan Basin and three sandstone samples were collected from Loho section of the Loho Basin. By attempting porosity-effective stress analysis, we can get preconsolidation pressure of each samples and use it to calculate their erosion amount. The principle of porosity-effective stress analysis is based on mechanical compaction, if the sample was compacted by chemical reaction, it will be regarded as an invalid sample. In order to increase the credibility of the results, this study use two method to judge the compaction style of the sandstone samples: (1) thin section observation; (2) paleotemperature analysis by vitrinite reflectance. The result of calculated erosion amount will then be compared by two method: (1) stratigraphic contrast; (2) vitrinite reflectance analysis. The results show that, all five sandstone samples in Madagida section are available to attempt porosity-effective stress analysis and derive the erosion amount between 709~2,248 meters; the result of stratigraphic comparison suggest that the lower boundary of erosion amount in Madagida section is 562 meters; whereas the result of vitrinite reflectance analysis shows that, in the condition of normal geothermal condition, the erosion amount is 3,688 meters. Furthermore, in Loho section, only one sandstone sample can be used for porosity-effective stress analysis and erosion amount is estimated between 1,186~2,162 m. However, neither stratigraphic contrast nor vitrinite reflectance analysis can constrain the result from porosity-effective stress analysis, causing the result of Loho section have higher uncertainty.
關鍵字(中) ★ 海岸山脈
★ 侵蝕厚度
★ 孔隙率
★ 鏡煤素反射率
關鍵字(英) ★ Taiwan Coastal Range
★ Erosion Amount
★ Porosity
★ Vitrinite Reflectance
論文目次 摘要...................................................i
Abstract...............................................ii
誌謝...................................................iv
目錄...................................................vi
圖目錄.................................................ix
表目錄.................................................xii

一、緒論...............................................1
1.1 研究動機、目的與論文架構...........................1
1.2 地質背景...........................................2
1.2.1 地體構造演化與沉積歷史...........................3
1.2.2 地層接觸關係與地層詳細資訊.......................8
1.3 地層侵蝕量估計方法的選擇...........................13
1.3.1 常見地層侵蝕量估計方法...........................14
1.3.2 各類方法在本研究區之可行性討論...................15

二、研究方法...........................................16
2.1 孔隙率實驗之砂岩樣本採集與薄片觀察.................16
2.1.1 沉積物受成岩作用的性質轉變.......................17
2.1.2 力學壓密與化學壓密的轉化與判斷標準...............17
2.1.3 砂岩樣本之礦物組成與岩石分類判斷依據.............21
2.1.4 孔隙率試驗之砂岩樣本採集地點.....................22
2.2 地層對比法之概念與限制.............................26
2.3 鏡煤素反射率資料引用與分析方法.....................27
2.3.1 鏡煤素反射率的演變及在地層侵蝕量推估的應用.......27
2.3.2 鏡煤素反射率在海岸山脈南段的研究.................30
2.3.3 造成鏡煤素反射率資料隨機性高的討論...............31
2.3.4 前人鏡煤素反射率樣本深度標定之疑慮...............33
2.4 根據不同圍壓下的孔隙率變化曲線決定預壓密應力.......34
2.4.1 力學壓密中有效應力對孔隙率的影響.................34
2.4.2 決定岩石樣本預壓密應力的原理及相關成果...........36
2.4.3 高圍壓孔隙率量測系統(YOKO2)原理..................39
2.4.4 YOKO2系統操作流程................................40
2.4.5 透過圍壓與孔隙壓力計算有效應力...................42
2.4.6 孔隙率-有效應力實驗資料分析方式..................43
2.4.7 單位重量測.......................................46
2.4.8 利用預壓密應力計算地層侵蝕量.....................47

三、研究成果...........................................50
3.1 孔隙率實驗樣本之薄片觀察與單位重量測...............50
3.1.1 單位重測量成果...................................50
3.1.2 礦物組成分析.....................................51
3.1.3 顆粒接觸關係.....................................52
3.1.4 石英溶液沉澱情形觀察.............................53
3.2 利用地層對比法推估地層侵蝕量的成果.................54
3.2.1 對比區域之選擇...................................54
3.2.2 對比所得之地層侵蝕量成果.........................56
3.3 引用前人Ro(%)資料推估古地溫與地層侵蝕量............57
3.3.1 碳化漂木資料的篩選與樣本深度的重新標定...........57
3.3.2 利用Ro(%)計算地層侵蝕量成果......................59
3.3.3 古地溫推估.......................................60
3.4 孔隙率-有效應力分析地層侵蝕量成果..................62
3.4.1 馬達吉達溪剖面實驗成果...........................62
3.4.2 樂合溪剖面實驗成果...............................67

四、綜合討論...........................................70
4.1 孔隙率實驗之砂岩樣本壓密型態綜合討論...............70
4.2 鏡煤素反射率分析成果討論...........................74
4.2.1 馬達吉達溪剖面...................................74
4.2.2 樂合溪剖面.......................................75
4.2.3 斷層帶對鏡煤素反射率的影響.......................76
4.3 孔隙率-有效應力分析成果討論........................77
4.3.1 馬達吉達溪剖面...................................77
4.3.2 樂合溪剖面.......................................77
4.4 樂合溪剖面之不整合面存在對本研究成果之影響.........79
4.5 綜合討論...........................................82

五、結論與建議.........................................84
5.1 結論...............................................84
5.2 建議...............................................85

參考文獻...............................................86

附錄A QFL分析數據..................................95
附錄B 孔隙率實驗之砂岩薄片影像.....................96
附錄C ?=0之孔隙率-有效應力變化趨勢.................99
附錄D 孔隙率-有效應力實驗數據......................101
參考文獻 [1] Konstantinovskaia, E., & Malavieille, J., "Erosion and exhumation in accretionary orogens: Experimental and geological approaches", Geochemistry, Geophysics, Geosystems, Vol. 6 (2), pp.1-25, 2005.

[2] Van Hinte, J., "Geohistory analysis—application of micropaleontology in exploration geology", AAPG Bulletin, Vol. 62 (2), pp.201-222, 1978.

[3] Guidish, T., Kendall, C. S. C., Lerche, I., Toth, D., & Yarzab, R., "Basin evaluation using burial history calculations: an overview", AAPG bulletin, Vol. 69 (1), pp.92-105, 1985.

[4] 李伟,「恢复地层剥蚀厚度方法综述」,中国海上油气 (地质), Vol. 10 (3) , pp.167-171, 1996。

[5] 陳立凱,「弧前盆地埋藏訊號以及造山帶剝蝕訊號 - 以東部海岸山脈為例」,國立中央大學,博士論文, 民國108年。

[6] 賴序衡與鄧屬予,「海岸山脈南段泰源盆地的地層與構造」,經濟部中央地質調查所彙刊, Vol. 29 , pp.45-76, 民國105年。

[7] Wu, W.-J., & Dong, J.-J., "Determining the maximum overburden along thrust faults using a porosity versus effective confining pressure curve", Tectonophysics, Vol. 578, pp.63-75, 2012.

[8] 陳文山與王源,臺灣東部海岸山脈地質,經濟部中央地質調查所,民國85年。

[9] 陳文山,「台灣海岸山脈沈積盆地之演化及其在地體構造上之意義」,國立台灣大學,博士論文, 民國87年。

[10] Horng, C.-S., Shea, K.-S., & Lee, J.-C., "Magnetobiostratigraphy of the Sanfu-chi section in the Coastal Range of Eastern Taiwan: new results", Journal of the Geological Society of China, Vol. 42, pp.613-629, 1999.

[11] Horng, C.-S., & Shea, K.-S., "Dating of the Plio-Pleistocene rapidly deposited sequence based on integrated magneto-biostratigraphy: A case study of the Madagida-chi Section, Coastal Range, eastern Taiwan", Journal of the Geological Society of China, Vol. 39, pp.31-58, 1996.

[12] 賴序衡,「海岸山脈南段泰源盆地之地層架構及沉積歷史」,國立台灣大學,碩士論文, 民國104年。

[13] 賴序衡、吳天偉與鄧屬予,「東臺灣海岸山脈南段八里灣層中凝灰岩層及礫質岩層之對比」,經濟部中央地質調查所彙刊, Vol. 31 , pp.1-32, 民國107年。

[14] Dorsey, R. J., Buchovecky, E. J., & Lundberg, N., "Clay mineralogy of Pliocene-Pleistocene mudstones, eastern Taiwan: Combined effects of burial diagenesis and provenance unroofing", Geology, Vol. 16 (10), pp.944-947, 1988.

[15] Lai, Y.-M., Chu, M.-F., Chen, W.-S., Lee, H.-Y., & Chung, S.-L., "Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc", TAO: Terrestrial, Atmospheric and Oceanic Sciences, Vol. 29 (2), pp.149-186, 2018.

[16] Wintsch, R. P., Yang, H.-J., Li, X.-H., & Tung, K.-A., "Geochronologic evidence for a cold arc–continent collision: the Taiwan orogeny", Lithos, Vol. 125 (1-2), pp.236-248, 2011.

[17] Liu, T.-K., Hsieh, S., Chen, Y.-G., & Chen, W.-S., "Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating", Earth and Planetary Science Letters, Vol. 186 (1), pp.45-56, 2001.

[18] 陳文山,「海岸山脈火山島弧與碰撞盆地的地層架構與年代」,西太平洋地質科學, Vol. 9 , pp.69-100, 民國98年。

[19] Chen, W. H., Huang, C. Y., Yan, Y., Dilek, Y., Chen, D., Wang, M. H., Zhang, X., Lan, Q., & Yu, M., "Stratigraphy and provenance of forearc sequences in the Lichi Mélange, Coastal Range: Geological records of the active Taiwan arc‐continent collision", Journal of Geophysical Research: Solid Earth, Vol. 122 (9), pp.7408-7436, 2017.

[20] Huang, C.-Y., Chen, W.-H., Wang, M.-H., Lin, C.-T., Yang, S., Li, X., Yu, M., Zhao, X., Yang, K.-M., & Liu, C.-S., "Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming forearc Lichi Mélange in North Luzon Trough forearc basin onshore and offshore eastern Taiwan: An overview", Earth-Science Reviews, Vol. 182, pp.102-140, 2018.

[21] Huang, C. Y., Yuan, P. B., Song, S. R., Lin, C. W., Wang, C., Chen, M. T., Shyu, C. T., & Karp, B., "Tectonics of short‐lived intra‐arc basins in the arc‐continent collision terrane of the Coastal Range, eastern Taiwan", Tectonics, Vol. 14 (1), pp.19-38, 1995.

[22] Huang, C.-Y., Yuan, P. B., Lin, C.-W., Wang, T. K., & Chang, C.-P., "Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica", Tectonophysics, Vol. 325 (1-2), pp.1-21, 2000.

[23] 楊燦堯,「北呂宋島弧岩漿之演化及其地體構造模式」,國立台灣大學,博士論文, 民國81年。

[24] Shyu, J. B. H., Sieh, K., Chen, Y.-G., & Chung, L.-H., "Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan", Geological Society of America Bulletin, Vol. 118 (11-12), pp.1447-1462, 2006.

[25] Shyu, J. B. H., Sieh, K., Avouac, J. P., Chen, W. S., & Chen, Y. G., "Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan", Journal of Geophysical Research: Solid Earth, Vol. 111, B08403, doi:10.1029/2005JB003971, 2006.

[26] 徐鐵良,「台灣東部海岸山脈地質」,台灣省地質調查所彙刊, Vol. 8 , pp.15-41, 民國45年。

[27] Chang, L.-S., "A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera.(III. Middle Part)", Proceedings of the Geological Society of China, Vol. 12, pp.89-101, 1969.

[28] Teng, L. S., "Petrographical study of the Neogene sandstones of the Coastal Range, eastern Taiwan (I. Northern Part)", Science Reports of the National Taiwan University ACTA Geologica Taiwanica, Vol. 20, pp.129-156, 1976.

[29] Von Blanckenburg, F., "The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment", Earth and Planetary Science Letters, Vol. 237 (3-4), pp.462-479, 2005.

[30] 张一伟、李京昌、金之钧與刘国臣,「原型盆地剥蚀量计算的新方法——波动分析法」,石油與天然氣地質, Vol. 21 (1) , pp.88-91, 2000。

[31] 久凯、丁文龙、李春燕、曾维特,「含油气盆地古构造恢复方法研究及进展」,岩性油气藏, Vol. 24 (1) , pp.13-19, 2012。

[32] 袁玉松、鄭和榮與涂偉,「沉積盆地剝蝕量恢復方法」,石油實驗地質, Vol. 30 (6) , pp.636-642, 2008。

[33] 张海军、曹强、孙建峰,「地层剥蚀厚度恢复研究——以南黄海北部盆地东北凹陷为例」,中国石油勘探, Vol. 13 (5) , pp.21-25, 2008。

[34] Aghaei, H., Hall, M., Wagstaff, B., & Tait, A., "Stratigraphic reconstruction of the Strzelecki Group outcrops in west Gippsland: new data on the present-day thickness and amount of erosion", Australian Journal of Earth Sciences, Vol. 64 (2), pp.251-264, 2017.

[35] 牟中海、唐勇、崔炳富、肖又军與王国林,「塔西南地区地层剥蚀厚度恢复研究」,石油学报, Vol. 23 (1) , pp.40-44, 2002。

[36] Wagreich, M., "Subduction tectonic erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria)", Tectonophysics, Vol. 242 (1-2), pp.63-78, 1995.

[37] Marroni, M., & Pandolfi, L., "Debris flow and slide deposits at the top of the Internal Liguride ophiolitic sequence, Northern Apennines, Italy: a record of frontal tectonic erosion in a fossil accretionary wedge", Island Arc, Vol. 10 (1), pp.9-21, 2001.

[38] Remitti, F., Vannucchi, P., Bettelli, G., Fantoni, L., Panini, F., & Vescovi, P., "Tectonic and sedimentary evolution of the frontal part of an ancient subduction complex at the transition from accretion to erosion: The case of the Ligurian wedge of the northern Apennines, Italy", GSA Bulletin, Vol. 123 (1-2), pp.51-70, 2011.

[39] Magara, K., "Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin", AAPG Bulletin, Vol. 60 (4), pp.554-565, 1976.

[40] Heasler, H. P., & Kharitonova, N. A., "Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin, Wyoming", AAPG Bulletin, Vol. 80 (5), pp.630-646, 1996.

[41] 杨江峰、洪太元、许江桥與于福生,「“趋势分析法” 在准噶尔盆地腹部地层剥蚀量恢复中的应用」,中国西部油气地质, Vol. 2 (1) , pp.83-84, 2006。

[42] Berra, F., & Carminati, E., "Subsidence history from a backstripping analysis of the Permo‐Mesozoic succession of the Central Southern Alps (Northern Italy)", Basin Research, Vol. 22 (6), pp.952-975, 2010.

[43] Clift, P. D., Pecher, I., Kukowski, N., & Hampel, A., "Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision", Tectonics, Vol. 22 (3), 2003.

[44] Lasabuda, A., Laberg, J. S., Knutsen, S.-M., & Høgseth, G., "Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: insights from a regional mass-balance approach", Marine and Petroleum Geology, Vol. 96, pp.501-521, 2018.

[45] Dow, W. G., "Kerogen studies and geological interpretations", Journal of Geochemical Exploration, Vol. 7, pp.79-99, 1977.

[46] Gleadow, A., Duddy, IR, & Lovering, J., "Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential", The APPEA Journal, Vol. 23 (1), pp.93-102, 1983.

[47] Lee, Y. I., & Ko, H. K., "Illite crystallinity and fluid inclusion analysis across a Paleozoic disconformity in central Korea", Clays and Clay Minerals, Vol. 45 (2), pp.147-157, 1997.

[48] 盧東郎,「鏡煤素反射率測定與評估生油岩成熟度之研究」,石油季刊, Vol. 17 (2) , pp.49-67, 民國70年。

[49] Krinari, G. A., & Khramchenkov, M. G., "Interstratified illite-smectite phases: formation mechanisms and practical applications", Russian Geology and Geophysics, Vol. 59 (9), pp.1120-1128, 2018.

[50] Mondol, N. H., Bjørlykke, K., Jahren, J., & Høeg, K., "Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial", Marine and Petroleum Geology, Vol. 24 (5), pp.289-311, 2007.

[51] Bjørlykke, K., "Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins", Sedimentary Geology, Vol. 301, pp.1-14, 2014.

[52] Hiatt, E.,"Links between Depositional and Diagenetic Processes in Basin Analysis: Porosity and Permeability Evolution in Sedimentary Rocks", in: Fluids and Basin Evolution, Association of Canada, pp. 63-92, 2000.

[53] Adams, A. E., MacKenzie, W. S., & Guilford, C., Atlas of Sedimentary Rocks Under the Microscope, Routledge, 2017.

[54] 李坤、赵锡奎、沈忠民、何建军與张小兵,「“趋势厚度法” 在塔里木盆地阿克库勒凸起地层剥蚀量恢复中的应用」,物探化探計算技術, Vol. 29 (5) , pp.415-419, 2007。

[55] Ting, F. T., "Petrographic techniques in coal analysis", Analytical Methods for Coal and Coal Products, Vol. 1, pp.3-26, 1978.

[56] Teichmüller, M., "Combination of the current methods of coal petrography by examination of polished thin sections-a means for better international cooperation in coal petrography: Proc", Proceedings of The International Committee for Coal Petrology, Vol. 1, pp.25-29, 1954.

[57] Ting, F. T., & Lo, H. B., "New techniques for measuring maximum reflectance of vitrinite and dispersed vitrinite in sediments", Fuel, Vol. 57 (11), pp.717-721, 1978.

[58] Bostick, N. H., "Time as a factor in thermal metamorphism of phytoclasts (coaly particles).", Congress International de Stratigraphie et de Geologie du Carbonifere, pp 183-193, Holland, August, 23-28, 1971.

[59] Sweeney, J. J., & Burnham, A. K., "Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1)", AAPG Bulletin, Vol. 74 (10), pp.1559-1570, 1990.

[60] Hood, A., Gutjahr, C., & Heacock, R., "Organic metamorphism and the generation of petroleum", AAPG Bulletin, Vol. 59 (6), pp.986-996, 1975.

[61] Tissot, B., & Welte, D., "Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration", Earth Science Reviews, Vol. 16, pp.372-373, 1980.

[62] Middleton, M., "Tectonic history from vitrinite reflectance", Geophysical Journal International, Vol. 68 (1), pp.121-132, 1982.

[63] Bostick, N. H., "Thermal alteration of clastic organic particles as an indicator of contact and burial metamorphism in sedimentary rocks", Geoscience and Man, Vol. 3 (1), pp.83-92, 1971.

[64] Bostick, N. H., "Phytoclasts as indicators of thermal metamorphism, Franciscan assemblage and Great Valley sequence (Upper Mesozoic), California", Geological Society of America Special Papers, Vol. 153, pp.1-18, 1974.

[65] 陈增智與柳广弟,「修正的镜质体反射率剥蚀厚度恢复方法」,沉积学报, Vol. 17 (1) , pp.141-144, 1999。

[66] Waples, D. W., "Time and temperature in petroleum formation: application of Lopatin′s method to petroleum exploration", AAPG Bulletin, Vol. 64 (6), pp.916-926, 1980.

[67] 胡圣标與张容燕,「利用镜质体反射率数据估算地层剥蚀厚度」,石油勘探與開發, Vol. 26 , pp.42-46, 1999。

[68] 佟彦明、宋立军、曾少军、程涛與危宇宁,「利用镜质体反射率恢复地层剥蚀厚度的新方法」,古地理學報, Vol. 7 (3) , pp.417-424, 2005。

[69] 陳志雄、陳文山、王源與黃敦友,「台灣東部海岸山脈泰源地區之生物地層」,地質, Vol. 11 (2) , pp.133-144, 民國80年。

[70] 丁禕,「臺灣東部海岸山脈泥岩中黏土礦物所隱示之地質意義」,國立台灣大學,碩士論文, 民國107年。

[71] 陈文煌、黄奇瑜、林彦均、闫义、陈多福、兰青、余梦明與钱坤,「台湾东部海岸山脉乐合弧前盆地层序: 记录活跃斜向弧陆碰撞之构造演化」,大地构造与成矿学, Vol. 39 (6) , pp.992-1007, 2015。

[72] Dasgupta, T., & Mukherjee, S., Sediment Compaction and Applications in Petroleum Geoscience, Springer, 2020.

[73] Athy, L. F., "Density, Porosity, and Compaction of Sedimentary Rocks", AAPG Bulletin, Vol. 14 (1), pp.1-24, 1930.

[74] 許瑞育,「沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象」,國立中央大學,碩士論文, 民國96年。

[75] Casagrande, A., "The determination of pre-consolidation load and it′s practical significance", International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 3, pp.60-64, 1936.

[76] Burmister, D., "The application of controlled test methods in consolidation testing", Symposium on Consolidation Testing of soils, pp. 83-98, ASTM International, 1952.

[77] Schmertmann, J. H., "The undisturbed consolidation behavior of clay", Transactions of ASCE, Vol. 120, pp.1208-1216, 1953.

[78] Sällfors, G., "Preconsolidation Pressure of Soft, High-Plastic Clays", Chalmers University of Technology, PhD Thesis, 1975.

[79] Jose, B. T., Sridharan, A., & Abraham, B., "Log-log method for determination of preconsolidation pressure", Geotechnical Testing Journal, Vol. 12 (3), pp.230-237, 1989.

[80] Lebert, M., & Horn, R., "A method to predict the mechanical strength of agricultural soils", Soil and Tillage Research, Vol. 19 (2-3), pp.275-286, 1991.

[81] Yang, Y., & Aplin, A. C., "Permeability and petrophysical properties of 30 natural mudstones", Journal of Geophysical Research: Solid Earth, Vol. 112, B03206, doi:10.1029/2005JB004243, 2007.

[82] 林怡男,「應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之探討」,國立中央大學,碩士論文, 民國98年。

[83] 吳文傑,「應力歷史相關之沉積岩孔隙率模型」,國立中央大學,碩士論文, 民國98年。

[84] 余允辰,「台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微觀構造」,國立中央大學,碩士論文, 民國100年。

[85] 楊盛博,「利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響」,國立中央大學,碩士論文, 民國104年。

[86] Terzaghi, K., "Principles of soil mechanics: I—Phenomena of cohesion of clays", Engineering News-Record, Vol. 95 (19), pp.742-746, 1925.

[87] Biot, M. A., & Willis, D., "The elastic coeff cients of the theory of consolidation", Journal of Applied Mechanics, Vol. 15, pp.594-601, 1957.

[88] 林彥均,「台灣東部海岸山脈中段樂合殘留弧前盆地之構造演化以及利吉混雜岩體成因探討: 微體古生物與黏土礦物證據」,國立成功大學,碩士論文, 民國100年。

[89] 王源與陳文山,海岸山脈地質圖幅 (十萬分之一) ,經濟部中央地質調查所,民國82年。

[90] Saemundsson, K., Axelsson, G., & Steingrímsson, B., "Geothermal systems in global perspective", Short Course on Exploration for Geothermal Resources, Vol. 11, pp.1-14, 2009.

[91] Lo, C.-H., Chang, S.-C., Chen, W.-S., & Song, S.-R., "Cold basin in Coastal Range, Eastern Taiwan: inferred from argon retention in zeolite and altered glass during burial heating", Western Pacific Earth Sciences, Vol. 2 (2), pp.223-238, 2002.

[92] Goff, S. J., Goff, F., & Janik, C. J., "Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results", Geothermics, Vol. 21 (4), pp.483-502, 1992.

[93] 郭政隆,「鏡煤素反光率在台灣西部油氣探勘的應用」,國立台灣大學,博士論文, 民國86年。
指導教授 董家鈞 蔡龍珆(Jia-Jyug Dong Loung-yei Tsai) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明