博碩士論文 107323094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.112.23
姓名 藍貫睿(Guan-Ray Lan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具拉伸性之低頻振動發電機
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究 製作出 具有 拉伸性的 低頻 振 動發電 機 ,由兩片具有平面螺旋導電線圈 的彈性薄膜與銣鐵硼磁鐵組成,整個元件體積約為 12×50×14 ??3。 本研究使 用 PDMS製成彈性薄膜以及可隨容器體積變化的液態金屬作為發電機主要材料。 利用電磁感應原理將振動源轉換為磁場變化,使液態金屬線圈產生感應電流 與常 見使用剛性材料製作的 微型發電機相比, 元件可以承受較大的應變。 此論文對兩種 形式的薄膜進行研究,第一種形式的薄膜在頻率為 26 Hz時,產生最大的平均開路 電壓 0.55 mV,平均功率為 5.2 nW。第二種形式之薄膜在頻率為 20 Hz時,平均開 路電壓 0.165 mV 平均功率 0.4325 nW。
摘要(英) A stretchable low-frequency vibration generator, which consists of two elastic membranes with planar spiral conductive coils and neodymium magnets is fabricated. The entire element volume is about 12×50×14 ??3 . The principle of electromagnetic induction is used to convert the vibration source into a magnetic field change, which causes the liquid metal coil to generate an induced current. Compared with the common micro-generators made of rigid materials, the proposed design can withstand larger strains. Two types of the generators are characterized. The first type produces a maximum average open circuit voltage of 0.55 mV and an average power of 5.2 nW at a frequency of 26 Hz. The second type has an average open circuit voltage of 0.165 mV and an average power of 0.4325 nW at a frequency of 20 Hz.
關鍵字(中) ★ 液態金屬
★ 低頻
★ 振動式發電機
★ 電磁感應
關鍵字(英) ★ Liquid metal
★ Low frequency
★ Vibration generator,
★ Electromagnetic induction
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
一、 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 機械能式微發電機文獻回顧 2
1-3-1 壓電式 2
1-3-2 靜電式 3
1-3-3 電磁式 4
1-4 機械能型微發電比較 5
1-5 軟性電子元件 6
1-6 文獻總結 8
1-7 論文架構 8
二、 基礎理論 9
2-1 電磁感應 10
2-2 機械振動模型 13
2-3 發電機之機電轉換與功率分析 15
三、 材料與製程 17
3-1 液態金屬 17
3-2 聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)18
3-3 微結構製造方法 19
3-4 具有螺旋導電結構的軟性電子元件 21
3-4-1 製作模具 22
3-4-2 調製PDMS 24
3-4-3 製作具有螺旋微流道之軟性薄膜 25
3-4-4 進行密封 29
3-4-5 灌注液態金屬作為導電線圈 30
四、 實驗架設與量測 32
4-1 開路電壓量測之實驗架設 32
4-2 開路電壓量測結果與討論 36
4-2-1 元件一量測 36
4-2-2 元件二量測 42
4-3 功率量測之實驗架設 47
4-3-1 螺旋線圈電阻值量測的結果與討論 48
4-3-2 元件一與元件二功率量測之實驗結果 49
4-4 結果與討論 57
五、 結論與未來展望 58
5-1 結論 58
5-2 未來展望 59
六、 參考文獻 60
參考文獻 [1] 馮耀鋆, "三維導電微成型技術開發應用於微機電系統之研究," 博士, 機械工程學系, 國立中央大學, 2018.
[2] D. F. Berdy, P. Srisungsitthisunti, B. Jung, X. Xu, J. F. Rhoads, and D. Peroulis, "Low-frequency meandering piezoelectric vibration energy harvester," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 5, pp. 846-858, 2012.
[3] S. Roundy, P. K. Wright, and K. S. Pister, "Micro-electrostatic vibration-to-electricity converters," in ASME international mechanical engineering congress and exposition, 2002, vol. 36428, pp. 487-496.
[4] F. Khan, F. Sassani, and B. Stoeber, "Copper foil-type vibration-based electromagnetic energy harvester," Journal of Micromechanics and Microengineering, vol. 20, no. 12, p. 125006, 2010.
[5] C. Bowen and M. H. Arafa, "Energy harvesting technologies for tire pressure monitoring systems," Advanced Energy Materials, vol. 5, no. 7, p. 1401787, 2015.
[6] J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y.-Y. Hsu, T. Vervust ,I. D. Wolf, and M. Jablonski, "Printed circuit board technology inspired stretchable circuits," MRS bulletin, vol. 37, no. 3, pp. 254-260, 2012.
[7] G. S. Jeong, D. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim & S. H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer," Nature communications, vol. 3, no. 1, pp. 1-8, 2012.
[8] F. Xu and Y. Zhu, "Highly conductive and stretchable silver nanowire conductors," Advanced materials, vol. 24, no. 37, pp. 5117-5122, 2012.
[9] C. B. Williams and R. B. Yates, "Analysis Of A Micro-electric Generator For Microsystems," in Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS ′95, 1995, vol. 1, pp. 369-372.
[10] S. S. Rao, Mechanical Vibrations. Addison-Wesley, 1995.
[11] H. Ge, H. Li, S. Mei, and J. Liu, "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, vol. 21, pp. 331-346, 2013.
[12] M. A. Khan, A. Alfadhel, J. Kosel, and M. Bakolka, "Fabrication and characterization of magnetic composite membrane pressure sensor," in 2016 IEEE Sensors Applications Symposium (SAS), 2016, pp. 1-5: IEEE.
[13] D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P.Schiavone, "Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility," Microelectronic Engineering, vol. 85, no. 5-6, pp. 1289-1293, 2008.
[14] D. Carugo, J. Y. Lee, A. Pora1, R. J. Browning, L. Capretto, C. Nastruzzi, E. Stride, "Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique," Biomedical microdevices, vol. 18, no. 1, p. 4, 2016.
[15] Y. Xia and G. M. Whitesides, "Soft lithography," Annual review of materials science, vol. 28, no. 1, pp. 153-184, 1998.
[16] Y. Xia, X.-M. Zhao, and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic Engineering, vol. 32, no. 1-4, pp. 255-268, 1996.
[17] E. Kim, Y. Xia, and G. M. Whitesides, "Micromolding in capillaries: applications in materials science," Journal of the American Chemical Society, vol. 118, no. 24, pp. 5722-5731, 1996.
[18] 鄭守博, "軟性薄膜振動發電機," 碩士, 機械工程學系, 國立中央大學, 2019.
指導教授 陳世叡 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明