計畫系統編號PA10907-1656
研究性質基礎研究
計畫編號MOST109-2116-M008-030
研究方式學術補助
主管機關科技部
研究期間10908 ~ 11007
執行機構國立中央大學水文與海洋科學研究所
年 度109年
研究經費1918千元
研究領域地球科學;
研究人員李明旭陳奕穎王聖翔許少瑜
中文關鍵字蒸發散;降雨入滲;水文循環;草地;森林
英文關鍵字Evapotranspiration;rainfall infiltration;hydrological cycles;grassland;forest
中文計畫概述1. 在學術層面為透過觀測、分析比較與模擬驗證探討不同時間尺度蒸發散與降雨入滲在森林與草地之水文循環特徵與變化,提供資料、知識與工具解析陸氣間水與能量交互作用動力機制。參與國際合作地球關鍵區合作網絡與通量觀測組織,提升國內地球科學基礎科研能見度。
2. 在應用層面,本研究成果提供面對氣候變遷衝擊、水資源管理、集水區經營與土地利用管理等決策所需之重要水文循環科學知識佐證。
英文計畫概述
報告系統編號RW11101-0332
計畫中文名稱蒸發散及降雨對森林與草地之水文循環特徵研究( II )
計畫英文名稱Studying Effects of Evapotranspiration and Precipitation on Hydrological Cycles of Forest and Grassland( I )( II )
主管機關科技部
計畫編號MOST109-2116-M008-030
執行機構國立中央大學水文與海洋科學研究所
研究期間10908 ~ 11007
報告頁數頁
使用語言中文
研究人員李明旭 LI MING-HSU
中文關鍵字蒸發散;降雨入滲;水文循環;草地;森林
英文關鍵字Evapotranspiration; rainfall infiltration; hydrological cycles; grassland; forest
中文摘要蒸發散與降雨入滲影響水文循環,其變動特徵除受大氣條件影響外也與地表覆蓋狀態及水文地質條件有關。從陸氣間能量交換觀點,蒸發散反應陸氣間潛熱能量交換,而森林除了碳吸存功能外,也因為蒸發散有利於降低地表溫度而扮演著減緩暖化的重要功能。本計畫為二年期計畫之第二年,主要工作因蓮華池鑽井工作受限而經修正後包含:(1) 降雨入滲過程森林土壤含水量變動特性分、(2) 乾旱事件對蓮華池能量與水文收支之影響、(3)改進陸表過程模式對森林與大氣間水、能量與碳交換機制、(4) 極端事件對蓮華池常綠闊葉林的影響、(5)持續觀測與驗證草地氣象坪蒸發散與入滲特徵。主要成果為:蓮華池地區乾溼季分明,淺層土壤含水量受降水影響較深層顯著,溼季期間淺部含水量多高於深部,乾季則相反。近10年因未出現嚴重乾旱,偏乾乾季與正常乾季之潛熱通量差異不顯著,但偏乾乾季有較高之淨輻射與可感熱通量,原因為偏乾乾季之降水日數與降水量較正常乾季為少。重新修正ORCHIDEE 模式參數已能掌握長期通量趨勢,但含水量誤差仍較大。極端事件以颱風對碳通量影響較顯著,以2013年蘇力颱風為例,約需二個月可恢復原有碳匯功能。草地測站地電阻監測對淺層土壤含水量變化掌握較佳,且降雨入滲空間差異顯著。後續可進一步探討整合地電阻監測之空間變異分析與ORCHIDEE模式應用於極端事件模擬比較。
英文摘要Evapotranspiration (ET) and rainfall infiltration (RI) affect changes in hydrological cycles. Variations in ET and RI are controlled by atmospheric conditions, land cover types, and hydrogeology characteristics. ET represents latent heat fluxes in energy exchanges between land and atmosphere. Forest plays a role in addition to provide functions of carbon sequestrations, but also to reduce global warming due to capable of lowering surface temperature via ET. This project is the send year of a two-year research. Originally planned drilling task was cancelled and main tasks were modified as the following: (1) analyzing effects of RI on soil moisture variations with surface covered by forests; (2) effects of dry seasons on forest energy and water budgets; (3) improving water, energy, and carbon exchanges mechanisms described by land surface models; (4) effects of extreme events on forest carbon sequestration; (5) continuing observations of et and RI at the grass site. Main findings include:
1. Due to distinct wet and dry seasons, shallow soil moistures are significantly affected by rainfall variations at the Lien-Hua-Chih (LHC) site. Shallow soil moistures are higher than deeper zone in wet seasons and vis versa in dry seasons.
2. No extreme drought observed in past 10 years, differences in sensible heats between dry and drier seasons are not significant with higher sensible heats in drier seasons. It can be explained by less rainfall in drier seasons.
3. Patterns of energy fluxes were well captured by the ORCHIDEE model with new parameters given in this year. Simulations of soil moistures should be improved in the future.
4. Extreme events caused significant impact of carbon sequestrations at the LHC and it took almost two months to be recovered.
5. Tests of electrical resistivity tomography (ERT) did show potentials on monitoring spatial variations in shallow soil moistures.
Suggestions for future studies include how to integrate ERT to provide spatial variations in soil moistures caused by ET and RI, and apply the ORCHIDEE to study effects of extreme events on forest ecosystems.