博碩士論文 87325061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.142.212.153
姓名 徐凱輬(Kai-liang Hsu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 多重解析度光流分析與深度計算
(Multiresolution Optical Flow Estimation and Range Determination)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 體積守恆的變形模塑應用於腹腔鏡手術模擬★ 互動式多重解析度模型編輯技術
★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)★ 基於二次式誤差及屬性準則的多重解析度模塑
★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮★ 建立在動態載入多重解析度地形模塑的戰術模擬
★ 以多階分割的空間關係做人臉偵測與特徵擷取★ 以小波轉換為基礎的影像浮水印與壓縮
★ 外觀守恆及視點相關的多重解析度模塑★ 腹腔鏡手術模擬系統中的流血特效
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 經由一連串連續動作影像的分析來判定物體移動的速度,再藉此速度來求得物體與偵測器間的距離是本研究的目標。為了達此目標,在本論文的研究中,我們發展一個結合了光流偵測 (optical flow estimation) 與深度計算 (range determination) 的被動式距離檢知即時系統。在光流偵測中,我們採用兩個不同性質的方法來估計影像中的光流值;一是Horn-Schunck方法;二是 Lucas-Kanade方法。在Horn-Schunck方法中,我們加入多重解析度的處理以加快光流計算的收斂速度,並得以使本系統更加符合即時的要求。藉由已知的光流資訊,配合有少許動作限制的透視投影公式,我們就能夠計算出目標物與偵測器間的距離,而此項距離資訊將可應用於自動飛行導航系統和軍事戰術演習上。
摘要(英) In the applications of autonomous flight navigation and tactical simulation, we need the range information acquired from the motion cues. In this study, we develop optical flow estimation methods as well as a range determination method to achieve the purpose. Two methods for estimating optical flow from image sequences are compared; one is the Horn-Schunck method and the other is the Lucas-Kanade method. Based on the motion data of optical flow and the principle of perspective transformation, the distance from the targets to the sensor is determined. In the optical flow estimation, the multiresolution strategy is utilized to speed up the process to make our system being suitable for real-time applications.
關鍵字(中) ★ 深度計算
★ 多重解析度
★ 光流
關鍵字(英) ★ Range Determination
★ Multiresolution
★ Optical Flow
論文目次 Abstract ii
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 System overview 2
1.2.1 Multiresolution optical flow estimation 2
1.2.2 Motion segmentation 3
1.2.3 Range determination 3
1.3 Thesis organization 4
Chapter 2 Related Works 6
2.1 Basic definitions of optical flow 6
2.2 Optical flow estimation 7
2.2.1 Gradient-based approach 7
2.2.2 Evaluation of optical flow techniques 10
2.3 Long image sequence analysis 11
2.4 Multiresolution model 12
2.5 Range determination 13
2.5.1 Binocular stereo vision methods 13
2.5.2 Monocular stereo vision methods 14
Chapter 3 Optical Flow Estimation 16
3.1 The gradient based constraint for optical flow estimation16
3.2 Smoothness constraints 17
3.2.1 Estimating the partial derivatives 18
3.2.2 Estimating the Laplacian of the flow velocities 18
3.2.3 Minimization 20
3.2.4 Choice of iterative scheme 22
3.3 First-order weighted least square approach 22
3.4 Multiresolution optical flow estimation 23
Chapter 4 Range Determination 26
4.1 Perspective transformation 26
4.2 Range determination method 28
Chapter 5 Experiments and Discussions 31
5.1 Experimental environments 31
5.2 Experimental results 31
5.2.1 Test image sequences 31
5.2.2 Terrain image sequences 37
5.2.3 Range determination 42
5.3 Discussions 43
Chapter 6 Conclusions 46
References 47
參考文獻 [1]Bainbridge-Smith, A. and R. G. Lane, "Determining optical flow using a differential method," Image and Vision Computing, Vol.15, pp.11-22, 1996.
[2]Barniv, Y., "Error analysis of the combined optical flow and stereo Passive Ranging," IEEE Trans. on Aerospace and Electronic System, Vol.28, No.4, pp.978-989, 1992.
[3]Barron, J., D. Fleet, and S. Beauchemin, "Performance of optical flow techniques," International Journal of Computer Vision, Vol.12, No.1, pp.43-77, 1994.
[4]Bors, A. and I. Pitas, "Optical flow estimation and moving object segmentation based on median radial basis function network," IEEE Trans. on Image Processing, Vol.7, No.5, pp.693-702, 1998.
[5]Brandt, J. W., "Improved accuracy in gradient-based optical flow estimation," International Journal of Computer Vision, Vol.25, No.1, pp.5-22, 1997.
[6]Chandrashekhar S. and R. Chellappa, "Passive navigation using a monocular image sequence," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.11, No.10, pp.1101-1106, 1989.
[7]Chang, M. M., A. M. Tekalp, and M. I. Sezan, "Simultaneous motion estimation and segmentation," IEEE Trans. on Image Processing, Vol.6, No.9, pp.1326-1333, 1997.
[8]Denney, T. S. J. and J. L. Prince, "Optimal brightness function for optical flow estimation of deformable motion," IEEE Trans. on Image Processing, Vol.3, No.2, pp.178-191, 1994.
[9]Elad, M. and A. Feuer, "Recursive optical flow estimation-adaptive filtering approach," Journal of Visual Communication and Image Representation, Vol.9, No.2, pp.119-138, 1998.
[10]Ghosal, S. and R. Mehrotra, "Robust optical flow estimation using semi_invariant local features," Pattern Recognition Vol.30, No.2, pp.229-238, 1997.
[11]Golland, P., Optical Flow Estimation using Color Images, Master Thesis, Artificial Intelligence Lab, MIT, 1995.
[12]Gupta, S. and J. Prince, "On variable brightness optical flow for tagged MRI," in 14th Int'l Conf. on Information Processing in Medical Imaging, Dordrecht, Holland, June, 1995, pp.323-334.
[13]Gupta, S. and J. Prince, "Stochastic models for DIV_CURL optical flow methods," IEEE Signal Processing Letters, Vol.3, No.2, pp.32-34, 1996.
[14]Horn, B. K. P. and B. G. Schunck, "Determining optical flow," Artificial Intelligence, Vol.17, No.1, pp.185-203, 1981.
[15]Irani, M., B. Rousso, and S. Peleg "Computing occluding and transparent motions" International Journal of Computer Vision, Vol.12, No.1, pp.5-16, 1994.
[16]Johnson, G. E., E. R. Dowski, and W. T. Cathey, "Passive ranging for acquisition of range images: applications to longitudinal vehicle control and warning systems," IEEE Conf. Intelligent Transportation System, Aug.8, 1997, pp.655-660.
[17]Kenner, M. and T.-C. Pong, "Motion analysis of long image sequence Flow," Pattern Recognition Letters, Vol.11, No.1, pp.123-131,1990.
[18]Lucas, B. and T. Kanade, "Optical navigation by the method of differences" in Proc. 7th Int. Joint Conf. Artificial Intelligence, 1985, pp.981-984.
[19]Memin, E. and P. Perez, Adaptative Multigrid and Variable Parameterization for Optical-flow Estimation, Technique Report, INRIA, 1997.
[20]Nagel, H. H., "Displacement vectors derived from second-order intensity variations in image sequences," Computer Vision, Graphics and Image Processing, Vol.21, No.1, pp.85-117, 1983.
[21]Niessen. W., J. Duncan and M. Nielsen, "A multiscale approach to image sequence analysis," Computer Vision and Image Understanding, Vol.65, No.2, pp.259-268, 1997.
[22]Sim, D. and R. Park, "A two-stage algorithm for motion discontinuity-preserving optical flow estimation," Computer Vision and Image Understanding, Vol.65, No.1, pp.19-37, 1997.
指導教授 曾定章(Din-chang Tseng) 審核日期 2000-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明