博碩士論文 108322611 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:18.221.85.236
姓名 Rida Handiana Devi(Rida Handiana Devi)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 Seismic Capacity of Low-to-Mid Rise Reinforced Concrete Buildings Retrofitted with CFRP
(Seismic Capacity of Low-to-Mid Rise Reinforced Concrete Buildings Retrofitted with CFRP)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為提升混凝土抗彎矩構架系統之整體勁度與避免構件產生局部破壞,本研究採用FRP (Fiber Reinforced Polymer)進行結構補強,該材料之特點為價格便宜,具高經濟效益,可大量地使用於建築結構上。透過靜力分析,可瞭解結構物承受極端外力下之非線性行為。本研究採用基於位移之應性側推法進行分析,並於構架元素兩端串聯塑鉸元素,用來模擬主筋降伏後之塑性行為。分析中有諸多參數會影響結構物之材料韌性容量,如結構屋齡、施工品質等。
本研究選用碳纖維之FRP,通稱CFRP(Carbon Fiber Reinforced Polymer),將其包裹於結構柱上,能有效地增加結構勁度與韌性容量。此外,由於CFRP提供之圍束效果,使保護層能發揮更大的作用,進而消散更多地震能量。研究結果顯示,當採用CFRP加勁中低層鋼筋混凝土建築時,結構之容量曲線能大幅地提升,比較不同加勁案例,並找出CFRP對於柱圍束效果與混凝土抗壓強度折減之影響。本研究結果可作為實務上房屋結構補強之參考。
摘要(英) To achieve the global satisfactory seismic behavior of a concrete frame structure and prevent undesirable local failures of its structural elements, local strengthening of structural members through FRP wrap is one of the cost-effective retrofitting strategies. A static analysis method is simple and provides more accuracy in presenting dynamic behavior, namely Displacement-based Adaptive Pushover Analysis, with a rotational spring approach for the elements. Several factors cause the element′s capacity to decrease in addition to seismic loadings, such as building age and construction failure.
This carbon type of FRP wrapped column will increase the strength of the element and the capacity that will allow attaining more energy dissipating global performance through increased external confinement. This on-going research aims to demonstrate the seismic performance of Low-to-Mid-Rise Concrete Frame retrofitted by CFRP wrap. The structure′s capacity curves before and after local strengthening will be developed and analyzed to identify the CFRP′s contribution to cases due to seismic demand for the cover concrete and reinforcement and degradation of the concrete′s compression strength. This curve allows evaluation for the retrofitting strategy is carried out rationally.
關鍵字(中) ★ FRP
★ 應性側推分析
★ 結構補強
★ 中低層鋼筋混凝土建築
關鍵字(英) ★ FRP
★ Adaptive Pushover Analysis
★ Retrofit
★ Low-to Mid Rise
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figure vi
List of Table ix
Chapter 1 Introduction and Literature Review 1
1.1 Background 1
1.2 Literature Review 3
1.2.1 Adaptive Pushover Analysis 3
1.2.2 Retrofitting Strategy of Reinforced Concrete Building 5
1.2.3 FRP (Fiber Reinforced Polymer) 7
1.3 Research Objective 8
1.4 Outline 8
Chapter 2 Basic Theory of Research 9
2.1 Low-to-Mid Rise Building 9
2.2 Adaptive Pushover Prosedure 9
2.2.1 Displacement-Based Adaptive Static Pushover Analysis 10
2.2.2 Inelastic Frame Displacement Based Plastic Hinge Element 14
2.3 Retrofitting Strategy of Reinforced Concrete Building 17
2.4 Method of Retrofitting With FRP 19
2.5 FRP (Fiber Reinforced Polymer) 23
Chapter 3 Research Method 25
3.1 Research Procedure 25
3.2 Seismostruct 26
3.3 The 3d Model 27
3.3.1 Element Model 27
3.3.2 Regular Building Model 29
3.4 Material Parameter 31
3.4.1 Reinforcement Properties 31
3.4.2 Concrete Properties 33
3.5 Beam-Column Element Type 35
3.6 Nonlinear Static (Adaptive Pushover) Analysis 38
3.6.1 Spectral Amplification 38
3.7 The Mechanism of Structural Damage Assumption 38
3.8 CFRP Wrap System 41
Chapter 4 Result and Discussion 42
4.1 Response Pushover of Element Column 42
4.2 Comparison Conventional Static Pushover and Adaptive Static Pushover 44
4.2.1 Capacity Curve 44
4.2.2 Horizontal Displacement 45
4.3 Adaptive Static Pushover Analysis of Three Cases 46
4.3.1 Decrease in The Capacity of The Structure due to Damage 46
4.3.2 Effect of Applying CFRP on The Capacity Structure 48
4.3.3 The Ratio of Increase in The Capacity of The Structure to The CFRP 52
4.3.4 Increase of Modelling Plastic Hinge of The CFRP Impact Structure 53
4.3.5 Inter-Story Drift Ratio of The FRP Impact Structure due to Damage 56
4.3.6 The Global Failure Mechanism of Plastic Hinge Formation 58
Chapter 5 Conclusions 67
References 69
APPENDIX 72
參考文獻 [1] Gunawan, E., & Widiyantoro, S. (2019). Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. Journal of Geodynamics, 123, 49-54.
[2] Devi, R. H., Sangadji, S., & Saifullah, H. A. (2020). Fragility curve of low-to-mid-rise concrete frame retrofitted with FRP. Paper presented at the E3S Web of Conferences.
[3] Antoniou, S., Rovithakis, A., & Pinho, R. (2002). Development and verification of a fully adaptive pushover procedure. Paper presented at the Proceedings of the twelfth european conference on earthquake engineering.
[4] Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake engineering & structural dynamics, 31(3), 561-582.
[5] Fajfar, P., & Gašperšič, P. (1996). The N2 method for the seismic damage analysis of RC buildings. Earthquake engineering & structural dynamics, 25(1), 31-46.
[6] Gupta, B., & Kunnath, S. K. (2000). Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake spectra, 16(2), 367-391.
[7] Shayanfar, M. A., Rakhshanimehr, M., & Ashoory, M. (2019). Adaptive Load Patterns Versus Non-adaptive Load Patterns for Pushover Analysis of Building. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(1), 23-36.
[8] Hoedajanto, D., & Imran, I. (2002). The Practice of Concrete Engineering in Indonesia. 한국콘크리트학회 학술대회 논문집, 107-113.
[9] Ferracuti, B., Savoia, M., Francia, R., Pinho, R., & Antoniou, S. (2007). Push-over Analysis of FRP-Retrofitted Existing RC Frame Structures. University of Patras, Patras, Greece.
[10] Fakharifar, M., Sharbatdar, M. K., Lin, Z., Dalvand, A., Sivandi-Pour, A., & Chen, G. (2014). Seismic performance and global ductility of RC frames rehabilitated with retrofitted joints by CFRP laminates. Earthquake Engineering and Engineering Vibration, 13(1), 59-73.
[11] Ibrahim, Y. (2015). Seismic retrofitting of mid-rise reinforced concrete framed structures. Earthquake Resistant Engineering Structures X, 152, 33.
[12] Ferraioli, M., & Lavino, A. (2018). A Displacement-Based Design Method for Seismic Retrofit of RC Buildings Using Dissipative Braces. Mathematical Problems in Engineering, 2018.
[13] Amran, Y. M., Alyousef, R., Rashid, R. S., Alabduljabbar, H., & Hung, C.-C. (2018). Properties and applications of FRP in strengthening RC structures: A review. Paper presented at the Structures.
[14] Al-Nimry, H. S., & Al-Rabadi, R. A. (2019). Axial–Flexural Interaction in FRP-Wrapped RC Columns. International Journal of Concrete Structures and Materials, 13(1), 53.
[15] Tahnat, Y. B. A., Dwaikat, M. M., & Samaaneh, M. A. (2018). Effect of using CFRP wraps on the strength and ductility behaviors of exterior reinforced concrete joint. Composite Structures, 201, 721-739.
[16] Rahat Dahmardeh, S., Motamedi, M., & Aziminejad, A. (2020). A study on the effects of torsional component of ground motions on seismic response of low‐and mid‐rise buildings. The Structural Design of Tall and Special Buildings, 29(4), e1699.
[17] Antoniou, S., & Pinho, R. (2004). Development and verification of a displacement-based adaptive pushover procedure. Journal of earthquake engineering, 8(05), 643-661.
[18] ANTONIOU, S., & PINHO, R. (2004). Advantages and limitations of adaptive and non-adaptive force-based pushover procedures. Journal of earthquake engineering, 8(04), 497-522.
[19] Pinho, R., & Antoniou, S. T. E. L. I. O. S. (2005, August). A displacement-based adaptive pushover algorithm for assessment of vertically irregular frames. In Proceedings of the Fourth European Workshop on the Seismic Behaviour of Irregular and Complex Structures.
[20] Lignos, D. G., & Krawinkler, H. (2011). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering, 137(11), 1291-1302.
[21] Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering & structural dynamics, 34(12), 1489-1511.
[22] Hoedajanto, D., & Imran, I. (2002). The Practice of Concrete Engineering in Indonesia. 한국콘크리트학회 학술대회 논문집, 107-113.
[23] Hioe, H. (2017). Perkuatan struktur dengan carbon fiber reinforced polymer. Diperoleh melalui situs internet: idn. sika. com/content/dam/Indonesia/Main/strengthening/document/perkuatan-struktur-dengan-cfrp. pdf. Diunduh pada tanggal, 8.
[24] Spoelstra, M. R., & Monti, G. (1999). FRP-confined concrete model. Journal of composites for construction, 3(3), 143-150.
[25] Bhowmik, T. (2011). FRP-confined capsule-shaped columns under axial and lateral loading.
[26] Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
[27] Menegotto, M. (1973). Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Paper presented at the Proc. of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads.
[28] ACI Committe 440.2R-17 (2017), Guide for the Design and Construction of Extremely Bonded FRP System for Strengthening Concrete Structure, American Concrete Institute.
[29] Zheng, K., Kuwornu, M., & Liu, Z. (2019). Shear Test of Variable Depth RC Beams with Inflection Point. In MATEC Web of Conferences (Vol. 275, p. 02003). EDP Sciences.
[30] Rooshenas, A. (2020). Comparing pushover methods for irregular high-rise structures, partially infilled with masonry panels. In Structures (Vol. 28, pp. 337-353). Elsevier.
[31] Almusallam, A. A. (2001). Effect of degree of corrosion on the properties of reinforcing steel bars. Construction and building materials, 15(8), 361-368.
[32] Shaw, I., & Andrawes, B. (2017). Repair of damaged end regions of PC beams using externally bonded FRP shear reinforcement. Construction and Building Materials, 148, 184-194.
指導教授 李姿瑩(Tzu Ying Lee) 審核日期 2020-12-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明