博碩士論文 107322050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.191.228.88
姓名 陳果逸(Kuo-Yi Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 逆斷層錯動下砂土層與淺基礎 互制受基礎載重及位置之影響
相關論文
★ 探討逆向坡受重力變形 及降雨影響之破壞型態★ 以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形
★ 極端降雨下堤防破壞機制探討 -以舊寮堤防為例★ 土壤工程性質水平方向空間變異性探討-以標準貫入試驗N值為例
★ 使用離散元素法進行乾砂直剪試驗模擬★ 以微觀角度探討顆粒狀材料在直剪試驗下之力學行為
★ 以地理統計方法進行大範圍基地地盤改良評估★ 以離散元素法進行具鍵結顆粒材料之直剪試驗模擬
★ 地工織物加勁土壤之承載力影響因子探討 -以中大紅土為例★ 以離散元素法探討加勁砂土層在淺基礎受載重下之力學
★ 卵礫石層直接剪力試驗與垂直平鈑載重試驗之離散元素法數值模擬★ 不同粗糙度係數下岩石節理面剖面之空間變異性探討
★ 以分離元素法與離心模型模擬在不同尺度下順向坡滑動行為★ 極端降雨下堤防邊坡穩定可靠度探討-以荖濃溪沿岸堤防為例
★ The micromechanical behavior of granular samples in direct shear tests using 3D DEM★ 以分離元素法與離心模型試驗探討順向坡滑動行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1999 年臺灣中部發生集集地震,造成許多造成許多生命財產的損失。在 這次地震中,車籠埔斷層的錯動造成嚴重的地表變形至 5 公尺,且座落於 地表變形影響範圍內,可以發現大量的基礎設施與結構損壞。為了解更多斷 層錯動與設施之影響,本研究以給定屬性淺基礎與斷層錯動進行數值模擬。
本研究使用二維顆粒流分析程式 PFC2D 5.0( Particle Flow Code in Two Dimension 5.0)進行逆斷層錯動模擬。本研究參考張有毅(2013),在 80g 下進 行砂箱試驗的數值模擬,其斷層上盤相對應的最大模型垂直位移(h)為 5 cm。本研究探討了乾砂土之逆斷層,於自由場與放置淺基礎之狀況下,在 不同地層深度位置,以土壤的應力路徑變化、主應力方向變化以及剪力破壞 之斷層錯動百分比的細部探討。此外亦將基礎載重、埋置深度以及放置位置 三種不同素,探討剪裂帶發展與基礎旋轉角,及其互制關係。
模擬結果顯示:砂性土層剪裂帶區的應力路徑變化主要受水平應力影響, 且以側向壓縮為主要路徑趨勢,由最大主應力方向來看亦是以水平應力為 主要方向。於剪力破壞之斷層錯動百分比中可發現基礎載重增加,會使基礎 下方之土層圍束效應加大,亦使該區塊需更大的斷層錯動以致破壞。而於基 礎載重加至 2 倍、基礎埋至土層以及基礎位置影響之案例中,其結果顯示: 基礎旋轉角與位置之關係(上盤近過渡帶)S/B=0> (過渡帶)S/B=0.69 > (下盤 近過渡帶)S/B=1> (上盤遠方)S/B=-2.39>(下盤遠方)S/B=3.33,而其中以基礎 放置於下盤且保持斷層露頭處約 15 公尺之距離最為安全,其他試驗中於上 盤處之基礎旋轉角較大。
摘要(英) In 1999, the Chi-Chi earthquake hit the central part of Taiwan and caused numerous loss of lives and properties. The offset of Chelungpu fault during this event induced severe ground deformation up to 5 m, and building failure can be found everywhere of the affected area. In order to study more of the building reaction during fault offset, we have modelled the fault offset with a shallow foundation of given properties.
The fault is modelled using the program Particle Flow Code in Two Dimensions (PFC2D). We have simulated a numerical model based on the sandbox test from Chang (2013), in which the model condition is under 80g (corresponding to maximum vertical displacement of 5 cm of the hanging wall). This study discussed the reverse fault with dry sandy soil in the condition of free field and shallow foundation. We used the way of the stress path variations, the principle stress direction and the ratio of dh/H with shear failure at different depth of the soils to investigate the result from numerical modeling. Furthermore, three different parameters, which are foundation load, embedding depth and placement position were also discussed about the interaction between the development of the shear zone and the rotation angle of the foundation in the study.
The results of the simulation show that the stress path variation of the sandy soil layer with fault rupture zone was mainly affected by the horizontal force , and the primary trend was lateral compression. Also, the results of the major principal stress direction, the horizontal stress was also the main direction in the fault rupture zone. In the other side, the ratio of the dh/H with shear failure shows that when the foundation load increase, the confining stress of the soil layer below the foundation would also increase, which required more fault displacement to cause the damage.
In the cases where the foundation loading is doubled, the embedding foundation and the foundation position affection, the results showed that: the relationship between the rotation angle of the foundation and the position was : (at the hanging wall which near the transition zone ) S/B=0 > (at the transition zone) S/B=0.69 > (at the footwall which near the transition zone) S/B=1 > (at the hanging wall far from the transition zone ) S/B=-2.39 > (at the footwall far from the transition zone) S/B=3.33. The safest position of the foundation was on the footwall, and about 15 meters away from the fault outcrop. In other tests, the foundation rotation angle at the hanging wall was larger.
關鍵字(中) ★ 逆斷層
★ 離散元素法
★ 應力路徑
★ 最大主應力方向
★ 淺基礎
關鍵字(英) ★ Reverse fault
★ Discrete element method
★ stress path
★ Major principle stress direction
★ Shallow foundation
論文目次 目錄
摘要 .................................................................................................................... I
ABSTRACT ...................................................................................................... II
目錄 .................................................................................................................... I
圖目錄 ............................................................................................................. IV
表目錄 .......................................................................................................... XIII
第一章 緒論 ...................................................................................................... 1
1.1 研究動機 .............................................................................................. 1
1.2 研究目的 .............................................................................................. 2
1.3 研究流程 .............................................................................................. 2
第二章 文獻回顧 .............................................................................................. 4
2.1 離散元素法 .......................................................................................... 4
2.1.1 離散元素法原理 ....................................................................... 4
2.1.2 PFC2D5.0 概述 ........................................................................... 5
2.1.3 PFC2D5.0 接觸模式 ................................................................... 7
2.2 逆斷層介紹 .......................................................................................... 9
2.2.1 逆斷層分類及受力說明 ............................................................ 9
2.2.2 臺灣斷層簡介 ......................................................................... 10
2.3 以歷史案例探討斷層錯動與不同基礎互制 ..................................... 14
2.4 以物理模擬探討逆斷層中基礎與剪裂帶之互制關係 ...................... 19
2.4.1 不同載重之淺基礎.................................................................. 19
2.4.2 不同位置之淺基礎.................................................................. 19
2.4.3 不同寬度之淺基礎 ................................................................. 20
2.5 以數值模擬探討逆斷層與基礎互制之關係 ..................................... 21
2.5.1 有限元素法之數值模擬 .......................................................... 21
2.5.2 有限差分法之數值模擬 .......................................................... 23
2.5.3 離散元素法之數值模擬 .......................................................... 26
第三章 研究方法 ............................................................................................ 30
3.1 觀測圓 ................................................................................................ 30
3.1.1 觀測圓基本原理 ..................................................................... 30
3.1.2 孔隙率計算 ............................................................................. 31
3.1.3 應力計算 ................................................................................. 32
3.2 逆斷層模擬流程................................................................................ 33
3.2.1 參數決定 ................................................................................ 34
3.2.2 基本模型建置 ........................................................................ 36
3.2.3 觀測圓設置 ............................................................................ 37
3.2.4 設置基礎 ................................................................................ 38
3.2.5 斷層滑動 ................................................................................. 39
3.3 應力狀態分析 .................................................................................... 41
3.3.1 應力路徑 ................................................................................. 41
3.3.2 主應力旋轉角 ........................................................................ 45
3.3.3 剪力破壞之斷層錯動百分比 .................................................. 47
3.5 模型驗證 ............................................................................................ 48
3.5.2 垂直應力檢核 ......................................................................... 48
3.5.3 底層顆粒不平衡力檢核 .......................................................... 54
3.5.4 最大主應力方向檢核 .............................................................. 54
3.5.5 剪裂帶發展:目視法與顆粒旋轉角比對............................... 56
3.5.6 基礎旋轉角檢核 ..................................................................... 59
第四章 逆斷層錯動下地中應力發展 ............................................................. 60
4.1 以自由場為例 .................................................................................... 60
4.1.1 上盤下盤觀 ............................................................................. 60
4.1.2 過渡帶觀測圓 ......................................................................... 64
4.1.3 最大主應力方向 ..................................................................... 74
4.1.4 剪力破壞之斷層錯動百分比 .................................................. 76
4.1.4 小結 ......................................................................................... 77
4.2 以WFR1-0.69 為例 ........................................................................... 78
4.2.1 上盤下盤觀測圓 ..................................................................... 80
4.2.2 過渡帶觀測圓 ......................................................................... 83
4.2.3 最大主應力方向 ..................................................................... 92
4.2.4 剪力破壞之斷層錯動百分比 .................................................. 94
4.2.5 小結 ......................................................................................... 95
4.3 以WFR2-0.69 為例 ........................................................................... 96
4.3.1 上盤下盤觀測圓 ..................................................................... 97
4.3.2 過渡帶觀測圓 ....................................................................... 100
4.3.3 最大主應力方向 ................................................................... 109
4.3.4 剪力破壞之斷層錯動百分比 ................................................ 111
4.3.5 小結 ....................................................................................... 112
4.4 綜合討論 .......................................................................................... 113
第五章 剪裂帶發展與基礎旋轉角之討論 ................................................... 116
5.1 模擬離心試驗組之討論 .................................................................. 117
5.1.1 剪裂帶發展 ........................................................................... 117
5.1.2 基礎旋轉角 .......................................................................... 120
5.2 基礎載重增加之影響 ...................................................................... 122
5.2.1 剪裂帶發展 ........................................................................ 122
5.2.2 基礎旋轉角 .......................................................................... 124
5.3 基礎埋置深度之影響 ...................................................................... 125
5.3.1 剪裂帶發展 ........................................................................ 125
5.3.2 基礎旋轉角 .......................................................................... 127
5.4 基礎放置位置之影響 ...................................................................... 128
5.4.1 剪裂帶發展 .......................................................................... 129
5.4.2 基礎旋轉角 .......................................................................... 129
5.5 小結.................................................................................................. 131
第六章 結論與建議 ...................................................................................... 133
6.1 結論 ................................................................................................. 133
6.2 建議與未來展望.............................................................................. 135
參考文獻 ....................................................................................................... 136
參考文獻 1. 何春蓀 (1990),普通地質學,五南圖書出版股份有限公司,台北市。
2. 李錫堤、康耿豪、鄭錦桐、廖啟雯 (2000), 921 集集大地震之地表破裂
及地盤變形現象,地工技術(81),5-16。
3. 宋丘言 (2012),使用離散元素法進行乾砂直剪試驗模擬,碩士,國立中
央大學,桃園縣。
4. 林銘郎、李崇正、黃文正、黃文昭(2011),活動斷層近地表變形特性研
究(1/4) 100 年度成果報告,經濟部中央地質調查所報告第9 號。
5. 林銘郎、李崇正、黃文正、黃文昭(2014),活動斷層近地表變形特性研
究(4/4) 103 年度期末報告,經濟部中央地質調查所103 年度委辦計畫
期末報告。
6. 邱威智(2019),逆斷層錯動下土層應力場受淺基礎載重及位置之影響,
碩士,國立中央大學,桃園縣。
7. 張有毅 (2013),以離心模型試驗及個別元素法評估正斷層和逆斷層錯動
地表及地下變形,博士,國立中央大學,桃園縣。
8. 曾議德 (2017),逆斷層錯動下土層之力學及微觀組構變化初探, 碩士,
國立中央大學,桃園縣。
9. 潘國樑 (2013),工程地質通論,五南圖書出版股份有限公司,台北市,
137
第173-151 頁。
10. Anastasopoulos, I., Callerio, A., Bransby, M., Davies, M., El Nahas, A.,
Faccioli, E., Gazetas, G., Masella, A., Paolucci, R., and Pecker, A. (2008).
"Numerical analyses of fault–foundation interaction." Bulletin of earthquake
engineering, 6(4), 645-675.
11. Bjerrum, L. "Allowable settlement of structures." Proc., Proceedings of the
3rd European Conference on Soil Mechanics and Foundation Engineering,
Wiesbaden, Germany, 135-137.
12. Bransby, M., Davies, M., El Nahas, A., and Nagaoka, S. (2008). "Centrifuge
modelling of reverse fault–foundation interaction." Bulletin of Earthquake
Engineering, 6(4), 607-628.
13. Bray, J. D., Seed, R. B., Cluff, L. S., & Seed, H. B. (1994). Earthquake fault
rupture propagation through soil. Journal of Geotechnical
Engineering, 120(3), 543-561.
14. Bray, J. D., Seed, R. B., & Seed, H. B. (1994). Analysis of earthquake fault
rupture propagation through cohesive soil. Journal of Geotechnical
Engineering, 120(3), 562-580.
15. Chu, S. S., Lin, M. L., Huang, W. C., Nien, W. T., Liu, H. C., & Chan, P. C.
(2015). Simulation of growth normal fault sandbox tests using the 2D discrete
element method. Computers & Geosciences, 74, 1-12.
16. Cundall, P. A., (1971). “A Computer Model for Simulating Progressive Large
Scale Movements in Blocky Rock Systems,” Proceedings of the Symposium
of the International Society of Rock Mechanics, Vol. 1, No. II-8, pp. 129-136.
17. Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for
granular assemblies. geotechnique, 29(1), 47-65.
18. Das, B. M., and Sobhan, K. (2013). Principles of geotechnical engineering,
Cengage learning.
19. Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A., and Paolucci, R.
(2008). "Fault rupture–foundation interaction: selected case histories."
Bulletin of Earthquake Engineering, 6(4), 557-583.
20. Garcia, F. E., and Bray, J. D. (2019). "Discrete element analysis of earthquake
fault rupture-soil-foundation interaction." Journal of Geotechnical and
Geoenvironmental Engineering, 145(9), 04019046.
21. Gazetas, G., Anastasopoulos, I., & Apostolou, M. (2007). Shallow and deep
foundations under fault rupture or strong seismic shaking. In Earthquake
geotechnical engineering (pp. 185-215). Springer, Dordrecht.
22. Itasca Consulting Group Inc. (2008) PFC2D (Particle Flow Code in 2
138
Dimensions).Version4.0 Minneapolis, MN:ICG
23. Itasca, C. (2014). "PFC (particle flow code in 2 and 3 dimensions), version
5.0 [User’s manual]." Numer. Anal. Methods Geomech, 32(6), 189-213.
24. Lambe, T. W., and Marr, W. A. (1979). "Stress path method." Journal of
Geotechnical and Geoenvironmental Engineering, 105(ASCE 14655
Proceeding).
25. Lin, M.-L., Chung, C.-F., and Jeng, F.-S. (2006). "Deformation of overburden
soil induced by thrust fault slip." Engineering Geology, 88(1-2), 70-89.
26. Mujtaba, H., Farooq, K., Sivakugan, N., and Das, B. M. (2018). "Evaluation
of relative density and friction angle based on SPT-N values." KSCE Journal
of Civil Engineering, 22(2), 572-581.
27. Oettle, N. K., and Bray, J. D. (2013). "Fault rupture propagation through
previously ruptured soil." Journal of geotechnical and geoenvironmental
engineering, 139(10), 1637-1647.
28. Yimsiri, S., and Soga, K. (2000). "Micromechanics-based stress–strain
behaviour of soils at small strains." Geotechnique, 50(5), 559-571.
指導教授 黃文昭 審核日期 2020-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明