參考文獻 |
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
Bathmann, K., and A. Collard, 2020: Surface-dependent correlated infrared observation errors and quality control in the FV3 framework. Q. J. R. Meteorol. Soc., 1–17, https://doi.org/10.1002/qj.3925.
Bédard, J., and M. Buehner, 2019: A practical assimilation approach to extract smaller-scale information from observations with spatially correlated errors: An idealized study. Q. J. R. Meteorol. Soc., 146, 468–482, https://doi.org/10.1002/qj.3687.
Berenguer, M., and I. Zawadzki, 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Weather Forecast., 23, 1085–1101, https://doi.org/10.1175/2008WAF2222134.1.
Berry, T., and T. Sauer, 2013: Adaptive ensemble Kalman filtering of non-linear systems. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 65, https://doi.org/10.3402/tellusa.v65i0.20331.
Bick, T., and Coauthors, 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Q. J. R. Meteorol. Soc., 142, 1490–1504, https://doi.org/10.1002/qj.2751.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. Mcnally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Q. J. R. Meteorol. Soc., 142, 1767–1780, https://doi.org/10.1002/qj.2774.
Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon. Wea. Rev., 145, 1019–1032, https://doi.org/10.1175/MWR-D-16-0240.1.
Cheng, H.-W., S.-C. Yang, and C.-S. Chen, 2019: Impact of Doppler radar network in Taiwan on the convective-scale data assimilation and precipitation prediction: The extreme precipitation event during 1-3 June 2017. AOGS 16th Annual Meeting, Singapore, Asia Oceanic GeoScience Society, AS30–A029.
——, ——, Y. C. Liou, and C. Sen Chen, 2020: An investigation of the sensitivity of predicting a severe rainfall event in northern Taiwan to the upstream condition with a WRF-based radar data assimilation system. Sci. Online Lett. Atmos., 16, 97–103, https://doi.org/10.2151/SOLA.2020-017.
Chou, M.-D. and Suarez, M. J., 1999: A Solar Radiation Parameterization for Atmospheric Studies, NASA Tech. Memo, NASA/GSFC, 104606, 40.
Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteorol. Appl., 23, 165–181, https://doi.org/10.1002/met.1538.
Cordoba, M., S. L. Dance, G. A. Kelly, N. K. Nichols, and J. A. Waller, 2017: Diagnosing atmospheric motion vector observation errors for an operational high-resolution data assimilation system. Q. J. R. Meteorol. Soc., 143, 333–341, https://doi.org/10.1002/qj.2925.
Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108.
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 may 2003 Oklahoma city supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294, https://doi.org/10.1175/2010MWR3438.1.
Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 1554–1562, https://doi.org/10.1175/1520-0493(1985)113<1554:SCFALA>2.0.CO;2.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fisher, M., M. Leutbecher, and G. A. Kelly, 2005: On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3235–3246.
Fowler, A. M., S. L. Dance, and J. A. Waller, 2018: On the interaction of observation and prior error correlations in data assimilation. Q. J. R. Meteorol. Soc., 144, 48–62, https://doi.org/10.1002/qj.3183.
Gastaldo, T., V. Poli, C. Marsigli, P. Paolo Alberoni, and T. Paccagnella, 2018: Data assimilation of radar reflectivity volumes in a LETKF scheme. Nonlinear Process. Geophys., 25, 747–764, https://doi.org/10.5194/npg-25-747-2018.
Geer, A. J., 2019: Correlated observation error models for assimilating all-sky infrared radiances. Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019.
Golub, G. H. and Van Loan, C. F., 1996: Matrix Computations. (third ed.), Johns Hopkins University Press, Baltimore, MD.
Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111–136, https://doi.org/10.1111/j.1600-0870.1986.tb00460.x.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Houtekamer, P. L. and Mitchell, H. L. 2005. Ensemble Kalman filtering. Q. J. Roy. Meteorol. Soc. 133, 3260–3289.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Q. J. R. Meteorol. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043,0170:TKCPAU.2.0.CO;2.
Keeler, R. J., and S. M. Ellis, 2000: Observational error covariance matrices for radar data assimilation. Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos., 25, 1277–1280, https://doi.org/10.1016/S1464-1909(00)00193-3.
Kotsuki, S., T. Miyoshi, K. Terasaki, G. Y. Lien, and E. Kalnay, 2017: Assimilating the global satellite mapping of precipitation data with the nonhydrostatic icosahedral atmospheric model (NICAM). J. Geophys. Res., 122, 631–650, https://doi.org/10.1002/2016JD025355.
Lindskog, M., K. Salonen, H. Järvinen, and D. B. Michelson, 2004: Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Rev., 132, 1081–1092, https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2.
Liu, Z.-Q., and F. Rabier, 2003: The potential of high-density observations for numerical weather prediction: A study with simulated observations. Q. J. R. Meteorol. Soc., 129, 3013–3035, https://doi.org/10.1256/qj.02.170.
Lupo, K. M., R. D. Torn, and S. C. Yang, 2020: Evaluation of stochastic perturbed parameterization tendencies on convective-permitting ensemble forecasts of heavy rainfall events in New York and Taiwan. Weather Forecast., 35, 5–24, https://doi.org/10.1175/WAF-D-19-0064.1.
Maldonado, P., J. Ruiz, and C. Saulo, 2020: Parameter sensitivity of the WRF-LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments. Weather Forecast., 35, 1345–1362, https://doi.org/10.1175/WAF-D-19-0161.1.
Maree, S. C. 2012: Correcting non positive definite correlation matrices. Bachelor thesis, Delft University of Technology, 68 pp.
Miyoshi T., Kalnay E., Li H., 2013: Estimating and including observation‐error correlations in data assimilation. Inverse Problems in Science and Engineering, 21, 387–398, https://doi.org/10.1080/17415977.2012.712527.
——, and Coauthors, 2016: Big data assimilation revolutionizing severe weather prediction. Bull. Am. Meteorol. Soc., 97, 1347–1354, https://doi.org/10.1175/BAMS-D-15-00144.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237.
Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137, 1939–1953, https://doi.org/10.1175/2008MWR2725.1.
Ott E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Putnam, B. J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The Analysis and Prediction of Microphysical States and Polarimetric Radar Variables in a Mesoscale Convective System Using Double-Moment Microphysics, Multinetwork Radar Data, and the Ensemble Kalman Filter. Mon. Wea. Rev., 142, 141–162, https://doi.org/10.1175/MWR-D-13-00042.1.
Rainwater, S., C. H. Bishop, and W. F. Campbell, 2015: The benefits of correlated observation errors for small scales. Q. J. R. Meteorol. Soc., 141, 3439–3445, https://doi.org/10.1002/qj.2582.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1.
Shao, Y.-M., 2015: Applying the local ensemble transform Kalman filter radar data assimilation system to improve short-term quantitative rainfall forecast: A case study with SoMEX IOP8. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 95 pp.
Simonin, J. A. Waller, S. P. Ballard, S. L. Dance, and N. K. Nichols, 2019: A pragmatic strategy for implementing spatially correlated observation errors in an operational system: An application to Doppler radial winds. Q. J. R. Meteorol. Soc., 145, 2772–2790, https://doi.org/10.1002/qj.3592.
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp., https://doi.org/10.5065/D68S4MVH.
Stewart, L. M., S. L. Dance, N. K. Nichols, J. R. Eyre, and J. Cameron, 2014: Estimating interchannel observation-error correlations for IASI radiance data in the Met Office system. Q. J. R. Meteorol. Soc., 140, 1236–1244, https://doi.org/10.1002/qj.2211.
Tabeart, J. M., S. L. Dance, A. S. Lawless, S. Migliorini, N. K. Nichols, F. Smith, and J. A. Waller, 2020: The impact of using reconditioned correlated observation-error covariance matrices in the Met Office 1D-Var system. Q. J. R. Meteorol. Soc., 146, 1372–1390, https://doi.org/10.1002/qj.3741.
Tao, W.–K., J. Simpson, and M. McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235.
——, and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys., 82, 97–137, https://doi.org/10.1007/s00703-001-0594-7.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.
Todling, R., 2015: A lag-1 smoother approach to system-error estimation: Sequential method. Q. J. R. Meteorol. Soc., 141, 1502–1513, https://doi.org/10.1002/qj.2460.
Tsai, C. C., S. C. Yang, and Y. C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 66, https://doi.org/10.3402/tellusa.v66.21804.
——, ——, C.-Y. Lin, and J.-C. Liou, 2016: The development of WLRAS and its very short-term QPF performance in multiple heavy rainfall events. Seventh EnKF Data Assimilation Workshop, State College, PA, The Pennsylvania State University, http://www.adapt.psu.edu/2016EnKFWorkshop/ABSTRACTS/Chih-Chien_Tsai_Poster.html.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and P.-H. Lin, 2020: The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. Terr. Atmos. Ocean. Sci., 31, 159–176, https://doi.org/10.3319/tao.2019.07.01.01.
Waller, J. A., S. L. Dance, A. S. Lawless, and N. K. Nichols, 2014: Estimating correlated observation error statistics using an ensemble transform Kalman filter. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 66, https://doi.org/10.3402/tellusa.v66.23294.
——, S. P. Ballard, S. L. Dance, G. Kelly, N. K. Nichols, and D. Simonin, 2016a: Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. Remote Sens., 8, https://doi.org/10.3390/rs8070581.
——, D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard, 2016b: Diagnosing observation error correlations for Doppler radar radial winds in the met office UKV model using observation-minus-background and observation-minus-analysis statistics. Mon. Wea. Rev., 144, 3533–3551, https://doi.org/10.1175/MWR-D-15-0340.1.
——, S. L. Dance, and N. K. Nichols, 2017: On diagnosing observation-error statistics with local ensemble data assimilation. Q. J. R. Meteorol. Soc., 143, 2677–2686, https://doi.org/10.1002/qj.3117.
——, E. Bauernschubert, S. L. Dance, N. K. Nichols, R. Potthast, and D. Simonin, 2019: Observation error statistics for Doppler radar radial wind superobservations assimilated into the DWD COSMO-KENDA system. Mon. Wea. Rev., 147, 3351–3364, https://doi.org/10.1175/MWR-D-19-0104.1.
Weston, P.P., 2011: Progress towards the implementation of correlated observation errors in 4D-Var. Forecasting Research Technical Report 560, Met Office, Exeter, UK.
——, W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Q. J. R. Meteorol. Soc., 140, 2420–2429, https://doi.org/10.1002/qj.2306.
Wu, P. Y., S. C. Yang, C. C. Tsai, and H. W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of a heavy rainfall event on 16 June 2008 in Taiwan. Mon. Wea. Rev., 148, 3631–3652, https://doi.org/10.1175/MWR-D-19-0319.1.
Yang, S. C., Z. M. Huang, C. Y. Huang, C. C. Tsai, and T. K. Yeh, 2020: A case study on the impact of ensemble data assimilation with GNSS-zenith total delay and radar data on heavy rainfall prediction. Mon. Wea. Rev., 148, 1075–1098, https://doi.org/10.1175/MWR-D-18-0418.1.
Yin J. and Zhang Y., 2013: Alternative gradient algorithms for computing the nearest correlation matrix. Appl. Math. Comput., 219, pp. 7591-7599, https://doi.org/10.1016/j.amc.2013.01.045.
Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, https://doi.org/10.1175/2009MWR2645.1. |