博碩士論文 107384003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.226.166.214
姓名 王雋揚(Jyun-Yang Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 燒結銅導電厚膜中混合玻璃系統的開發
(Development of mixing glass systems on Cu sintered conductive thick film)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 對於被動元件,例如多層陶瓷電容器(MLCC),低溫共燒陶瓷(LTCC)和厚膜電阻器來說,導電金屬厚膜與高介電系數陶瓷的共燒是非常重要的。一般來說,添加到銅導電漿料中的無機玻璃粉可以調節銅導電厚膜的燒結性質及熱力學性質。但是,玻璃粉的製作,一般是使用傳統熔融方法製備的。在此情況下,如果添加的玻璃種類在導電漿料系統中沒有作用,須重新熔融調整玻璃的比例,這是很麻煩的。此外,很少有研究討論到不同玻璃粉對於燒結過程中銅導電厚膜微觀結構的影響。
因此在本論文中,我們添加了不同比例的混合B2O3-Bi2O3¬ 和ZnO-B2O3-SiO2¬ 玻璃粉來進行銅導電厚膜的燒結。在第四章中,我們探討了玻璃粉添加劑對銅燒結導電厚膜性能的影響機制。我們發現銅導電厚膜的導電性會因B2O3-Bi2O3¬ 和ZnO-B2O3-SiO2¬ 玻璃粉的不同比例而有所不同。此研究提出,銅導電厚膜的導電性的差異是由於液相燒結過程中,銅導電厚膜的微結構(晶粒尺寸和玻璃/ 銅複合結構)以及銅和玻璃粉的氧化還原反應造成的。在第五章中,我們藉由淬火實驗,了解銅導電厚膜的微結構。本研究提出了一種新的兩步驟液相燒結方法,並結合了液相燒結和燒結過程中的退火現象提出機制。並且,商用玻璃粉(B2O3-Bi2O3¬ 和ZnO-B2O3-SiO2¬)在銅導電厚膜中的效應在此論文中被討論。
經過了一系列的研究,我們發現,通過將商用玻璃粉(B2O3-Bi2O3¬ 和ZnO-B2O3-SiO2-)混合便可以改變銅導電厚膜的導電性,而不需要使用新的玻璃系統。同樣地,根據這項研究的結果,可以提出一個新的燒結參數,以適當的溫度或時間進行燒結,調控出想要的銅導電厚膜的性質及微結構。
摘要(英) For the passive components, such as multilayer ceramic capacitors (MLCC), low temperature co-fired ceramics (LTCC) and thick-film resistors, co-firing the conductive metal thick films with high-dielectric ceramics is considerably importance. Inorganic glass frits added in the Cu paste could modulate the sinterability and thermal properties of the conductive thick film. However, the glass frits always prepared by conventional melting method. It would be difficult to modify the ratio of component of the glass grits if the kind of glass does not work in the system. Besides, there were few studies discussing the effect of different glass on the microstructure of Cu conductive thick film during sintering process.
In this thesis, Cu thick film are sintered with mixing B2O3-Bi2O3¬ glass and ZnO-B2O3-SiO2¬ glass frits. In chapter 4, the mechanism of glass additives on the properties of Cu sintered conductive thick film is discussed. The electrical properties are found different with different ratio of B2O3-Bi2O3¬ glass and ZnO-B2O3-SiO2¬ glass. It is caused by the microstructure (grain size and the glass/Cu composite structure) of the sintered Cu thick films and the redox reaction of Cu and glass during LPS. In chapter 5, the microstructure evolution during LPS is found steps by steps by the additional quenching experiment. A new two-step liquid phase sintering and the combination of LPS and annealing phenomenon during sintering are proposed. The effect of the commercial-used glass grits (B2O3-Bi2O3 and SiO2-ZnO-B2O3) is found.
The properties of Cu thick film can be modified by just the additives mixing of commercial glass frits (B2O3-Bi2O3 and SiO2-ZnO-B2O3) instead of a new glass system. Also, with the results of this study, the sintering process with a proper temperature or times can be proposed to adjust the properties and microstructure of the desired Cu conductive thick film
關鍵字(中) ★ 燒結銅
★ 導電厚膜
★ 玻璃粉
關鍵字(英)
論文目次 Table of contents
中文摘要 I
Abstract II
Table of contents III
List of tables IV
List of figures V
Chapter 1: Introduction 1
1.1 Background for the application of thick film 1
1.2 The materials of conductive paste and substrate 3
1.3 The function of glass frits on conductive thick film 7
1.4 Liquid phase sintering (LPS) process 9
1.5 Parameters for controlling electrical properties of thick film 11
Chapter 2: Motivation 14
2.1 The development of mixing glass system 14
Chapter 3: Experimental procedure 17
3.1 Fabrication of Cu sintered conductive thick film 17
3.2 Analysis of Cu sintered conductive thick film 19
Chapter 4: Mechanism of glass additives on the properties of Cu thick film 20
4.1 Properties and microstructure of Cu thick film 20
4.2 LPS effect of glass on the conductivity of Cu thick film 29
4.3 Redox effect of glass on the conductivity of Cu thick film 33
Chapter 5: Mechanism of microstructure evolution of Cu thick film during LPS 39
5.1 Kinetics of Cu grain growth in Cu thick film 39
5.2 Microstructure evolution of Cu thick film during two-step LPS 50
5.3 The establishment of microstructure evolution diagram 62
Chapter 6: Summary 66
References 68
參考文獻 [1] Kishi, H., Mizuno, Y., & Chazono, H. (2003). Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Japanese journal of applied physics, 42(1R), 1.
[2] Kasap, S., & Capper, P. (Eds.). (2017). Springer handbook of electronic and photonic materials. Springer.
[3] Rane, S., & Puri, V. (2001). Thick film dielectric overlay effects on thin and thick film microstrip bandpass filter. Microelectronics journal, 32(8), 649-654.
[4] Wang, Y., Zhang, G., & Ma, J. (2002). Research of LTCC/Cu, Ag multilayer substrate in microelectronic packaging. Materials Science and Engineering: B, 94(1), 48-53.
[5] Blank, T., Leyrer, B., Maurer, T., Meisser, M., Bruns, M., & Weber, M. (2014, September). Copper thick-film substrates for power electronic applications. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC) (pp. 1-6). IEEE.
[6] White, N. (2017). Thick films. In Springer Handbook of Electronic and Photonic Materials (pp. 1-1). Springer, Cham.
[7] Songping, W., Li, J., Jing, N., Zhenou, Z., & Song, L. (2007). Preparation of ultra fine copper–nickel bimetallic powders for conductive thick film. Intermetallics, 15(10), 1316-1321.
[8] Hlina, J., Reboun, J., Hirman, M., & Hamacek, A. (2017, May). Comparison of copper and silver thick film on alumina substrates properties. In 2017 40th International Spring Seminar on Electronics Technology (ISSE) (pp. 1-5). IEEE.
[9] Reboun, J., Hlina, J., Totzauer, P., & Hamacek, A. (2018). Effect of copper-and silver-based films on alumina substrate electrical properties. Ceramics International, 44(3), 3497-3500.
[10] Yang, W., Sun, Q., Lei, Q., Zhu, W., Li, Y., Wei, J., & Li, M. (2019). Formation of a highly conductive thick film by low-temperature sintering of silver paste containing a Bi2O3-B2O3-ZnO glass frit. Journal of Materials Processing Technology, 267, 61-67.
[11] Bittner, A., Pagel, N., Seidel, H., & Schmid, U. (2012). Long-term stability of Ag and Cu thin films on glass, LTCC and alumina substrates. Microsystem technologies, 18(7-8), 879-884.
[12] Park, S., Seo, D., & Lee, J. (2008). Preparation of Pb-free silver paste containing nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 197-201.
[13] Park, K., Seo, D., & Lee, J. (2008). Conductivity of silver paste prepared from nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 351-354.
[14] Kargin, Y. F., Zhereb, V. P., & Egorysheva, A. V. (2002). Metastable Phase Diagram for the Bi2O3-B2O3 System. Russian Journal Of Inorganic Chemistry, 47(8), 1240-1242.
[15] Mahapatra, M. K., & Lu, K. (2010). Glass-based seals for solid oxide fuel and electrolyzer cells–a review. Materials Science and Engineering: R: Reports, 67(5-6), 65-85.
[16] Maeder, T. (2013). Review of Bi2O3 based glasses for electronics and related applications. International Materials Reviews, 58(1), 3-40.
[17] Cheng, Y., Xiao, H., Guo, W., & Guo, W. (2006). Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochimica Acta, 444(2), 173-178.
[18] HWANG, C., FUJINO, S., & MORINAGA, K. (2004). Surface Tension of Bi2O3-B2O3 Binary Glass Melts. In Journal of the Ceramic Society of Japan, Supplement Journal of the Ceramic Society of Japan, Supplement 112-1, PacRim5 Special Issue (pp. S1200-S1205). The Ceramic Society of Japan.
[19] Qiao, W., & Chen, P. (2010). Study on the properties of Bi2O3-B2O3-BaO lead-free glass using in the electronic pastes. Glass Physics and Chemistry, 36(3), 304-308.
[20] Becker, P. (2003). Thermal and optical properties of glasses of the system Bi2O3–B2O3. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 38(1), 74-82.
[21] Fujino, S., Hwang, C., & Morinaga, K. (2005). Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts. Journal of materials science, 40(9-10), 2207-2212.
[22] Bale, S., Rahman, S., Awasthi, A. M., & Sathe, V. (2008). Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses. Journal of Alloys and Compounds, 460(1-2), 699-703.
[23] He, F., Wang, J., & Deng, D. (2011). Effect of Bi2O3 on structure and wetting studies of Bi2O3–ZnO–B2O3 glasses. Journal of alloys and compounds, 509(21), 6332-6336.
[24] He, F., Cheng, J. S., Deng, D. W., & Wang, J. (2010). Structure of Bi2O3-ZnO-B2 O3 system low-melting sealing glass. journal of central south university of technology, 17(2), 257-262.
[25] Ehrt, D., & Flügel, S. (2011). Properties of zinc silicate glasses and melts. Journal of Materials Science and Engineering. A, 1(3A), 312.
[26] Lim, E. S., Kim, B. S., Lee, J. H., & Kim, J. J. (2007). Characterization of the low temperature firing BaO–B2O3–SiO2 glass: The effect of BaO content. Journal of the European Ceramic Society, 27(2-3), 825-829.
[27] Li, M., Wang, M., Wang, M. T., Hao, M. R., Liu, Z. G., Hu, Y. H., & Yue, P. (2013). Study on the ZnO-B2O3-SiO2 Glass-ceramic with DTA, XRD and SEM. In Advanced Materials Research (Vol. 683, pp. 42-45). Trans Tech Publications Ltd.
[28] Liu, Y., Deng, D., Wang, H., Zhao, S., & Xu, S. (2012). Effect of Oxides Additive on Properties and Structure of Low-Melting Sealing Bi2O3–B2O2–ZnO Glasses. Journal of The Chinese Ceramic Society, 40(10), 1409-1414.
[29] Arora, A., Shaaban, E. R., Singh, K., & Pandey, O. P. (2008). Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. Journal of non-crystalline solids, 354(33), 3944-3951.
[30] Dyamant, I., Itzhak, D., & Hormadaly, J. (2005). Thermal properties and glass formation in the SiO2–B2O3–Bi2O3–ZnO quaternary system. Journal of non-crystalline solids, 351(43-45), 3503-3507.
[31] Jeong, S. J., Kim, M. S., Kim, I. S., & Lee, D. S. (2011). Characterization of Borosilicate Glass‐Coated Cu Electrode for Internal Electrode of Multilayer Ceramic Device. International Journal of Applied Ceramic Technology, 8(5), 1173-1182.
[32] Dong, Q., Huang, C., Duan, G., & Zhang, F. (2017). Facile synthesis and electrical performance of silica-coated copper powder for copper electronic pastes on low temperature co-fired ceramic. Materials Letters, 186, 263-266.
[33] Chen, J., Yang, D. A., Zhai, T., Gui, B., & Wang, Q. (2016). Influence of B 2 O 3–SiO 2–ZnO–BaO glass ratio and sintering temperature on the microstructure and property of copper thick film for low temperature co-fired ceramic. Journal of Materials Science: Materials in Electronics, 27(2), 1929-1937.
[34] Zhang, F., Duan, G., Cao, L., Yang, D. A., & Liu, Z. (2018). Preparation and properties of antioxidative BaO–B 2 O 3–SiO 2 glass-coated Cu powder for copper conductive film on LTCC substrate. Journal of Materials Science: Materials in Electronics, 29(1), 130-137.
[35] Ayyappan, S., Gopalan, R. S., Subbanna, G. N., & Rao, C. N. R. (1997). Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts.
[36] Nakamura, T., Tsukahara, Y., Sakata, T., Mori, H., Kanbe, Y., Bessho, H., & Wada, Y. (2007). Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction. Bulletin of the Chemical Society of Japan, 80(1), 224-232.
[37] Kurihara, Y., Takahashi, S., Yamada, K., & Endoh, T. (1990). Ag-Pd thick film conductor for AlN ceramics. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 13(2), 306-312.
[38] Xu, X., Zhuang, H., Li, W., & Jiang, G. (2004). Bonding behavior of copper thick films containing lead-free glass frit on aluminum nitride substrates. Ceramics international, 30(5), 661-665.
[39] Lee, S. J., Kriven, W. M., Park, J. H., & Yoon, Y. S. (1997). Bonding behavior of Cu/CuO thick film on a low-firing ceramic substrate. Journal of materials research, 12(9), 2411-2418.
[40] Yi, J. H., Koo, H. Y., Kim, J. H., Ko, Y. N., Kang, Y. C., Lee, H. M., & Yun, J. Y. (2010). Fine size Pb-based glass frit with spherical shape as the inorganic binder of Al electrode for Si solar cells. Journal of alloys and compounds, 490(1-2), 488-492.
[41] Yi, J. H., Koo, H. Y., Kim, J. H., Ko, Y. N., Hong, Y. J., Kang, Y. C., & Lee, H. M. (2011). Pb-free glass frits prepared by spray pyrolysis as inorganic binders of Al electrodes in Si solar cells. Journal of alloys and compounds, 509(21), 6325-6331.
[42] Jung, D. S., Koo, H. Y., & Kang, Y. C. (2009). The effects of glass powders prepared by spray pyrolysis on the structures and conductivities of silver electrode. Materials Chemistry and Physics, 118(1), 25-31.
[43] Hong, Y. J., Jung, D. S., Koo, H. Y., Kim, J. H., Ko, Y. N., & Kang, Y. C. (2011). Characteristics of ZnO–B2O3–SiO2–CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode. Journal of alloys and compounds, 509(31), 8077-8081.
[44] Kuromitsu, Y., Yoshida, H., Takebe, H., & Morinaga, K. (1997). Interaction between alumina and binary glasses. Journal of the American Ceramic Society, 80(6), 1583-1587.
[45] Marcinkowski, M., Schmidt, R., Eberstein, M., & Partsch, U. (2017, June). Sinter kinetics and interface reactions of silver thick films on aluminium nitride. In 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac) (pp. 157-161). IEEE.
[46] Wu, S. (2007). Preparation of ultra-fine copper powder and its lead-free conductive thick film. Materials Letters, 61(16), 3526-3530.
[47] German, R. M., Suri, P., & Park, S. J. (2009). Review: liquid phase sintering. J. Mater. Sci, 44(1), 1-39.
[48] Zuo, R., Li, L., Gui, Z., Hu, X., & Ji, C. (2002). Effects of Additives on the Interfacial Microstructure of Cofired Electrode‐Ceramic Multilayer Systems. Journal of the American Ceramic Society, 85(4), 787-793.
[49] Ko, Y. N., Koo, H. Y., Yi, J. H., Kim, J. H., & Kang, Y. C. (2010). Characteristics of Pb-based glass frit prepared by spray pyrolysis as the inorganic binder of silver electrode for Si solar cells. Journal of alloys and compounds, 490(1-2), 582-588.
[50] Akhtar, M., & Anklekar, R. M. (2004). Characterization of copper pastes for end termination application of base metal electrode MLCCs. Microelectronics international.
[51] Sakaue, T., & Yoshimaru, K. (2003). Copper powder for termination electrode in MLCC. Journal of the Japan Society of Powder and Powder Metallurgy, 50(11), 908-911.
[52] Wu, S., Qin, H., & Li, P. (2006). Preparation of fine copper powders and their application in BME-MLCC. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 13(3), 250-255.
[53] Paik, U., Kang, K. M., Jung, Y. G., & Kim, J. (2003). Binder removal and microstructure with burnout conditions in BaTiO3 based Ni-MLCCs. Ceramics international, 29(8), 939-946.
[54] Yoon, J. R., Shin, D. S., Jeong, D. Y., & Lee, H. Y. (2012). Control of connectivity of Ni electrode with heating rates during sintering and electrical properties in BaTiO 3 based multilayer ceramic capacitors. Transactions on electrical and electronic materials, 13(4), 181-184.
[55] Polotai, A. V., Fujii, I., Shay, D. P., Yang, G. Y., Dickey, E. C., & Randall, C. A. (2008). Effect of heating rates during sintering on the electrical properties of ultra‐thin Ni–BaTiO3 multilayer ceramic capacitors. Journal of the American Ceramic Society, 91(8), 2540-2544.
[56] Pieczonka, T., Kazior, J., & Laska, M. (2018). The effect of nitrogen flow rate on Acrawax C decomposition and its removal during sintering of Alumix 431D grade powder. Powder Metallurgy, 61(2), 149-156.
[57] Chung, Y. S., & Kim, H. G. (1988). Effect of oxide glass on the sintering behavior and electrical properties in Ag thick films. IEEE transactions on components, hybrids, and manufacturing technology, 11(2), 195-199.
[58] Ketkar, S. A., Umarji, G. G., Phatak, G. J., Seth, T., Mulik, U. P., & Amalnerkar, D. P. (2006). Glass frit content—Property co-relation in thick films of photoimageable silver conductor paste. Materials Science and Engineering: B, 132(1-2), 197-203.
[59] Seo, D. S., Park, S. H., & Lee, J. K. (2009). Sinterability and conductivity of silver paste with Pb-free frit. Current Applied Physics, 9(1), S72-S74.
[60] Hsiang, H. I., Fan, L. F., & Cheng, H. Y. (2015). Silver end termination paste preparation for chip inductor applications. Journal of Alloys and Compounds, 650, 835-843.
[61] Xiaoqiang, M. A., Xiaoyun, Z. H. U., Jinming, L. O. N. G., & Mei, C. A. O. (2017). Effect of Glass Powder on Performance of Copper Conductor Film Prepared via Sintering Cu-glass Paste. Chinese Journal of Materials Research, 31(6), 472-480.
[62] Rane, S. B., Seth, T., Phatak, G. J., Amalnerkar, D. P., & Ghatpande, M. (2004). Effect of inorganic binders on the properties of silver thick films. Journal of Materials Science: Materials in Electronics, 15(2), 103-106.
[63] Lee, Y. I., & Choa, Y. H. (2012). Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. Journal of Materials Chemistry, 22(25), 12517-12522.
[64] Jin, Y., Bernacki, M., Agnoli, A., Lin, B., Rohrer, G. S., Rollett, A. D., & Bozzolo, N. (2016). Evolution of the annealing twin density during δ-supersolvus grain growth in the nickel-based superalloy Inconel™ 718. Metals, 6(1), 5.
[65] Fullman, R. L., & Fisher, J. C. (1951). Formation of annealing twins during grain growth. Journal of Applied Physics, 22(11), 1350-1355.
[66] Pande, C. S., Imam, M. A., & Rath, B. B. (1990). Study of annealing twins in FCC metals and alloys. Metallurgical transactions A, 21(11), 2891-2896.
[67] Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science, 304(5669), 422-426.
[68] Guo, W., Lin, T., Wang, T., He, P., Sekulic, D. P., & Guo, S. (2017). Microstructure evolution during air bonding of Al2O3 to Al2O3 joints using bismuth–borate–zinc glass. Journal of the European Ceramic Society, 37(13), 4015-4023.
[69] Sun, Q., Yang, W., Liu, Y., Li, Y., & Li, M. (2019). Microstructure and mechanical properties of tempered glass joint bonded with Bi-B-Zn low melting glass. Journal of Materials Processing Technology, 271, 404-412.
[70] Chen, J., Li, Y., Miao, W., Mai, C., & Li, M. (2018). Bonding Cu to Al 2 O 3 with Bi-B-Zn Oxide Glass Via Oxidation–Reduction Reaction. Journal of Electronic Materials, 47(1), 542-549.
[71] Duffy, J. A. (1996). Redox equilibria in glass. Journal of Non-Crystalline Solids, 196, 45-50.
[72] Khonthon, S., Morimoto, S., Arai, Y., & Ohishi, Y. (2009). Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Optical Materials, 31(8), 1262-1268.
[73] Wang, X., Fang, Z. Z., & Sohn, H. Y. (2008). Grain growth during the early stage of sintering of nanosized WC–Co powder. International Journal of Refractory Metals and Hard Materials, 26(3), 232-241.
[74] Liu, Y., & Huang, X. (2006). Liquid-phase-sintering of alumina ceramics and sintering kinetic analysis. JOURNAL-CHINESE CERAMIC SOCIETY, 34(6), 647.
[75] Banerjee, S., & Paul, A. (1974). Thermodynamics of the System Cu‐O and Ruby Formation in Borate Glass. Journal of the American Ceramic Society, 57(7), 286-290.
[76] Lazzari, S., Nicoud, L., Jaquet, B., Lattuada, M., & Morbidelli, M. (2016). Fractal-like structures in colloid science. Advances in colloid and interface science, 235, 1-13.
[77] Koo, J. B., & Yoon, D. Y. (2001). Abnormal grain growth in bulk Cu—The dependence on initial grain size and annealing temperature. Metallurgical and Materials Transactions A, 32(8), 1911-1926.
[78] Koo, J. B., Yoon, D. Y., & Henry, M. F. (2002). The effect of small deformation on abnormal grain growth in bulk Cu. Metallurgical and materials transactions A, 33(12), 3803-3815.
指導教授 劉正毓 審核日期 2020-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明