博碩士論文 107324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.220.97.161
姓名 李坪駿(Ping-Jyun Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可調控式褐藻酸/聚己內酯複合傷口敷料
(The Development of Tunable Alginate/Polycaprolactone Composite Wound Dressings)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 複雜性的創傷如慢性傷口,因癒合緩慢,若持續未完善處理,一旦遭受細菌感染,就可能造成蜂窩性組織炎,更可能引發敗血症,因此需開發多功能的傷口敷料來因應其狀況,本研究選用褐藻酸鈉與聚己內酯為靜電紡絲的高分子材料,褐藻酸鈉具親水性可為傷口提供潮濕環境,聚己內酯則因其有良好的生物相容性以促進細胞貼附,除此之外,我們將奈米銀引入到聚己內酯纖維中使其抑制細菌的生長,以達到抗菌效果,並藉由將血小板衍生生長因子(platelet-derived growth factor B,PDGFB)與聚乙烯亞胺(PEI)結合為帶正電奈米顆粒,使其可與帶負電的褐藻酸鈉纖維做結合,再藉由原位轉染的方式使細胞可以表達PDGFB,最後藉由褐藻酸鈉與聚己內酯纖維各自不同的特性來調整不同比例的褐藻酸鈉與聚己內酯纖維,以達到擁有多功能效果的傷口敷料。
摘要(英) Wound healing is an important issue in clinical situation. For example, chronic wounds are slow to heal. The prolonged inflammatory phase in chronic wounds may result in not only an immature granulation tissue but also a parallel reduction of wound tensile strength, which always eventually cause amputations. Therefore, it is necessary to develop a multifunctional wound dressing to promote tissue regeneration. In this study, alginate and polycaprolactone (PCL) fibers are investigated as materials for wound dressing preparation. Alginate is a hydrophilic material and can provide a moist environment in wound site. Polycaprolactone has good biocompatibility to promote cell adhesion. In addition, we introduced the silver nanoparticles into polycaprolactone fibers to inhibit the growth of bacteria. To promote tissue regeneration, plasmid DNA encoding platelet-derived growth factor B (PDGFB) was complexed with polyethyleneimine (PEI) as positively charged nanoparticles to adsorb on negatively charged sodium alginate fibers. Therefore, cells contact fibers can thus be transfected to express PDGFB. Through coelectrospinning, alginate and PCL were prepared as composite fibers, and their properties can be manipulated by adjusting fiber ratios to achieve a versatile wound dressing.
關鍵字(中) ★ 電紡絲
★ 褐藻酸
★ 聚己內酯
關鍵字(英)
論文目次 摘要 v
Abstract vi
致謝 vii
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1-1研究背景 1
1-2研究目的 3
第二章 文獻回顧 4
2-1電紡絲 4
2-1-1電紡絲簡介與原理 4
2-1-2電紡絲於傷口敷料上之應用 6
2-1-3複合電紡絲 8
2-2褐藻酸鈉 10
2-2-1褐藻酸鈉之簡介 10
2-2-2褐藻酸鈉之性質 11
2-2-3褐藻酸鈉於傷口敷料上之應用 13
2-3聚己內酯 15
2-3-1聚己內酯之簡介 15
2-3-2聚己內酯之性質 16
2-3-3聚己內酯於傷口敷料上之應用 17
2-4慢性傷口 19
2-4-1糖尿病之傷口修復 19
2-4-2促進傷口癒合的生長因子 23
2-4-3血小板衍生生長因子(PDGF)於糖尿病傷口之應用 24
2-5奈米銀粒子 25
2-5-1奈米銀粒子之簡介 25
2-5-2奈米銀粒子於傷口敷料的應用 28
2-6基因治療 30
2-6-1基因載體 30
2-6-2基因治療之應用 31
第三章 實驗材料與方法 34
3-1實驗材料 34
3-2實驗儀器 38
3-3實驗方法 40
3-3-1電紡絲溶液製備 40
3-3-2含奈米銀粒子之PCL纖維製備 42
3-3-3電紡絲纖維製備 43
3-3-4溶液配製 44
3-3-5 NIH 3T3細胞培養 47
3-3-6 SEM之樣本製備 50
3-3-7 ATR-FTIR樣本製備 51
3-3-8萬能拉伸試驗機樣本製備 51
3-3-9細胞存活率實驗(MTT assay) 52
3-3-10質體DNA(PDGFB)純化 54
3-3-11原位轉染實驗 55
3-3-12測量PDGFB釋放實驗 58
3-3-13抗菌實驗 60
3-3-14奈米銀檢測[27] 62
3-3-15傷口癒合動物實驗 63
第四章 結果與討論 65
4-1褐藻酸鈉/聚己內酯/奈米銀之複合電紡絲性質 65
4-1-1電紡絲型態與直徑分布 65
4-1-2複合電紡絲之ATR-FTIR分析 68
4-1-3複合電紡絲之機械性質分析 71
4-1-4複合電紡絲之接觸角分析 73
4-2複合電紡絲之奈米銀釋放 74
4-3複合電紡絲之抗菌活性 76
4-3-1液態培養之抑菌率 76
4-3-2固態培養之抗菌活性 78
4-4複合電紡絲對細胞之影響 81
4-4-1細胞於複合纖維上培養之SEM圖 81
4-4-2細胞於複合纖維上培養之增生率 84
4-5於複合電紡絲上進行原位轉染PDGFB 86
4-5-1原位轉染之螢光影像 86
4-5-2原位轉染後分析PDGFB釋放與細胞增殖率 90
4-6傷口癒合動物實驗 93
第五章 結論 98
第六章 參考資料 100
參考文獻 1. Ovington L.G., Advances in wound dressings. Clinics in Dermatology, 2007. 25(1): p. 33-38.
2. Boateng J.S., Matthews K.H., Stevens H.N., and Eccleston G.M., Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 2008. 97(8): p. 2892-2923.
3. Kenry and Lim C.T., Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 2017. 70: p. 1-17.
4. Pham Q.P., Sharma U., and Mikos A.G., Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 2006. 12(5): p. 1197-1211.
5. Tan L., Hu J., Huang H., Han J., and Hu H., Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. International Journal of Biological Macromolecules, 2015. 79: p. 469-476.
6. Abrigo M., McArthur S.L., and Kingshott P., Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromolecular Bioscience, 2014. 14(6): p. 772-792.
7. Yang S., Li X., Liu P., Zhang M., Wang C., and Zhang B., Multifunctional Chitosan/Polycaprolactone Nanofiber Scaffolds with Varied Dual-Drug Release for Wound-Healing Applications. ACS Biomaterials Science & Engineering, 2020. 6(8): p. 4666-4676.
8. Lee Y.J., Shin D.S., Kwon O.W., Park W.H., Choi H.G., Lee Y.R., Han S.S., Noh S.K., and Lyoo W.S., Preparation of atactic poly(vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. Journal of Applied Polymer Science, 2007. 106(2): p. 1337-1342.
9. Sikorski P, Mo F, Skjåk-Bræk G, and Stokke B.T., Evidence for Egg-Box-Compatible Interactions in Calcium-Alginate Gels from Fiber X-ray Diffraction. Biomacromolecules, 2007. 8: p. 2098-2103.
10. Kyzioł A, Michna J, Moreno I, Gamez E, and S I., Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. European Polymer Journal, 2017. 96: p. 350-360.
11. Tarun K and N G., Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian Journal of Fibre & Textile Research, 2011. 37: p. 127-132.
12. Lee J.Y., Chung J., Chung W.J., and Kim G., Fabrication and in vitro biocompatibilities of fibrous biocomposites consisting of PCL and M13 bacteriophage-conjugated alginate for bone tissue engineering. Journal of Materials Chemistry B, 2016. 4(4): p. 656-665.
13. Bartnikowski M., Dargaville T.R., Ivanovski S., and Hutmacher D.W., Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019. 96: p. 1-20.
14. Zhang S., Campagne C., and Salaün F., Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Applied Sciences, 2019. 9(3): p. 2-36.
15. Bayati V., Abbaspour M.R., Dehbashi F.N., Neisi N., and Hashemitabar M., A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: an in vitro and in vivo study. Anatomical Science International, 2017. 509-520(4): p. 509-520.
16. Ren K., Wang Y., Sun T., Yue W., and Zhang H., Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science and Engineering: C, 2017. 78: p. 324-332.
17. Gentile P., Chiono V., Tonda-Turo C., Ferreira A.M., and Ciardelli G., Polymeric membranes for guided bone regeneration. Biotechnol J, 2011. 6(10): p. 1187-1197.
18. Powers J.G., Higham C., Broussard K., and Phillips T.J., Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol, 2016. 74(4): p. 607-25; quiz 625-6.
19. Moura L.I., Dias A.M., Carvalho E., and de Sousa H.C., Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomaterialia, 2013. 9(7): p. 7093-7114.
20. 郭緒東, 重組人類生長因子在傷口癒合上的運用. 家庭醫學與基層醫療 第二十五卷第十期: p. 389-395.
21. Li H., Fu X., Zhang L., Huang Q., Wu Z., and Sun T., Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. Journal of Surgical Research, 2008. 145(1): p. 41-48.
22. Xie P. , Ji W. , and Wei Z. , Preparation and Properties of Silver Nanoparticles. Characterization and Application of Nanomaterials, 2018: p. 40-48.
23. Barani H., Boroumand M.N., and Rafiei S., Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics. Fibers and Polymers, 2017. 18(4): p. 658-665.
24. Lakshman L.R., Shalumon K.T., Nair S.V., Jayakumar R., and Nair S.V., Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-fibrous Mat for Wound Dressing. Journal of Macromolecular Science, Part A, 2010. 47(10): p. 1012-1018.
25. Shenashen M.A., El-Safty S.A., and Elshehy E.A., Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle & Particle Systems Characterization, 2014. 31(3): p. 293-316.
26. Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., and Galdiero M., Silver nanoparticles as potential antibacterial agents. Molecules, 2015. 20(5): p. 8856-8874.
27. El-Aassar M.R., Ibrahim O.M., Fouda M.M.G., El-Beheri N.G., and Agwa M.M., Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydrate Polymers, 2020. 238: p. 116-175.
28. 劉宜旻, Indolicidin 之二聚體形式對輸送去氧寡核苷酸的影響. 國立中央大學 化學工程與材料工程學系 碩士論文, 2018.
29. Li W., Wu D., Tan J., Liu Z., Lu L., and Zhou C., A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. Journal of Materials Chemistry B, 2018. 6(43): p. 6977-6992.
30. Yoon D.S., Lee Y., Ryu H.A., Jang Y., Lee K.M., Choi Y., Choi W.J., Lee M., Park K.M., Park K.D., and Lee J.W., Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomaterialia, 2016. 38: p. 59-68.
31. 林于廷, 開發促進傷口癒合之複合敷料. 國立中央大學 化學工程與材料工程學系 碩士論文, 2019.
32. Peng H. , Han Y. , Liu T. , Tjiu W.C. , and He C. , Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 2010. 502(1-2): p. 1-7.
33. Elzein T., Nasser-Eddine M., Delaite C., Bistac S., and Dumas P., FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 2004. 273(2): p. 381-387.
34. Sarmento B., Ferreira D., Veiga F., and Ribeiro A., Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 2006. 66(1): p. 1-7.
35. Bierhalz A.C.K. and Moraes A.M., Composite membranes of alginate and chitosan reinforced with cotton or linen fibers incorporating epidermal growth factor. Materials Science and Engineering: C, 2017. 76: p. 287-294.
36. Lee H., Ahn S., Bonassar L.J., Chun W., and Kim G., Cell-laden poly(varepsilon-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Engineering: Part C,Methods, 2013. 19(10): p. 784-793.
37. Croisier F., Duwez A.S., Jerome C., Leonard A.F., van der Werf K.O., Dijkstra P.J., and Bennink M.L., Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 2012. 8(1): p. 218-224.
38. Chen S., Liu B., Carlson M.A., Gombart A.F., Reilly D.A., and Xie J., Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 2017.
39. Augst A.D., Kong H.J., and Mooney D.J., Alginate hydrogels as biomaterials. Macromolecular Bioscience, 2006. 6(8): p. 623-633.
40. Breitbart A.S., Laser J., Parrett B., Porti D., Grant R.T., Grande D.A., and Mason J.M., Accelerated diabetic wound healing using cultured dermal fibroblasts retrovirally transduced with the platelet-derived growth factor B gene. Annals of Plastic Surgery, 2003. 51(4): p. 409-414.
41. Wang M., Wei J., Shang F., Zang K., and Ji T., Platelet-derived growth factor B attenuates lethal sepsis through inhibition of inflammatory responses. International Immunopharmacology, 2019. 75: p. 105792.
42. Kaltalioglu K., Coskun-Cevher S., Tugcu-Demiroz F., and Celebi N., PDGF supplementation alters oxidative events in wound healing process: a time course study. Archives of Dermatological Research, 2013. 305(5): p. 415-422.
43. Li H F.X., Zhang L, Research of PDGF-BB Gel on the Wound Healing of Diabetic Rats and Its Pharmacodynamics. Yearbook of Surgery, 2009. 2009: p. 203-204.
44. Man L.X., Park J.C., Terry M.J., Mason J.M., Burrell W.A., Liu F., Kimball B.Y., Moorji S.M., Lee J.A., and Breitbart A.S., Lentiviral gene therapy with platelet-derived growth factor B sustains accelerated healing of diabetic wounds over time. Annals of Plastic Surgery, 2005. 55(1): p. 81-86.
45. Jinnin M., Ihn H., Mimura Y., Asano Y., Yamane K., and Tamaki K., Regulation of fibrogenic/fibrolytic genes by platelet-derived growth factor C, a novel growth factor, in human dermal fibroblasts. Journal of Cellular Physiology, 2005. 202(2): p. 510-517.
46. Plonka A.B., Khorsand B., Yu N., Sugai J.V., Salem A.K., Giannobile W.V., and Elangovan S., Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Therapy, 2017. 24(1): p. 31-39.
47. McDougall S., Dallon J., Sherratt J., and Maini P., Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 2006. 364(1843): p. 1385-1405.
指導教授 胡威文 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明