參考文獻 |
References
1. Qin, C.; Numata, Y.; Zhang, S.; Yang, X.; Islam, A.; Zhang, K.; Chen, H.; Han, L., Novel near infrared squaraine sensitizers for stable and efficient dye sensitized solar cells. Adv. Funct. Mater 2014, 24 (20), 3059-3066.
2. Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M., Dye-sensitized solar cells: A brief overview. Solar Energy 2011, 85 (6), 1172-1178.
3. Yang, L.-N.; Sun, Z.-Z.; Li, Q.-S.; Chen, S.-L.; Li, Z.-S.; Niehaus, T. A., Unsymmetrical squaraine dye containing dithieno[3,2-b:2′,3′-d]pyrrole as a π-spacer: A potential photosensitizer for dye-sensitized solar cells. J. Power Sources 2014, 268, 137-145.
4. Ozawa, H.; Yamamoto, Y.; Kawaguchi, H.; Shimizu, R.; Arakawa, H., Ruthenium sensitizers with a hexylthiophene-modified terpyridine ligand for dye-sensitized solar cells: synthesis, photo- and electrochemical properties, and adsorption behavior to the TiO2 surface. ACS Appl Mater Interfaces 2015, 7 (5), 3152-3161.
5. Liu, S.-H.; Fu, H.; Cheng, Y.-M.; Wu, K.-L.; Ho, S.-T.; Chi, Y.; Chou, P.-T., Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. J. Phys. Chem. C 2012, 116 (31), 16338-16345.
6. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127 (48), 16835-16847.
7. Chen, C. Y.; Chen, J. G.; Wu, S. J.; Li, J. Y.; Wu, C. G.; Ho, K. C., Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells. Angew. Chem. Int. Ed. 2008, 47 (38), 7342-7345.
8. Yin, N.; Wang, L.; Lin, Y.; Yi, J.; Yan, L.; Dou, J.; Yang, H.-B.; Zhao, X.; Ma, C.-Q., Effect of the π-conjugation length on the properties and photovoltaic performance of A–π–D–π–A type oligothiophenes with a 4,8-bis(thienyl)benzo[1,2-b:4,5-b′]dithiophene core. Beilstein J. Org. Chem. 2016, 12, 1788-1797.
9. Lee, D.; Ma, X.; Jung, J.; Jeong, E. J.; Hashemi, H.; Bregman, A.; Kieffer, J.; Kim, J., The effects of extended conjugation length of purely organic phosphors on their phosphorescence emission properties. Phys. Chem. Chem. Phys. 2015, 17 (29), 19096-19103.
10. Tsai, H.-H. G.; Tan, C.-J.; Tseng, W.-H., Electron transfer of squaraine-derived dyes adsorbed on TiO2 clusters in dye-sensitized solar cells: A density functional theory investigation. J. Phy. Chem. C 2015, 119 (9), 4431-4443.
11. Kanno, S.; Imamura, Y.; Hada, M., Design of spin-forbidden transitions for polypyridyl metal complexes by time-dependent density functional theory including spin-orbit interaction. Phys. Chem. Chem. Phys. 2016, 18 (21), 14466-14478.
12. Juwita, R.; Lin, J.-Y.; Lin, S.-J.; Liu, Y.-C.; Wu, T.-Y.; Feng, Y.-M.; Chen, C.-Y.; Gavin Tsai, H.-H.; Wu, C.-G., Osmium sensitizer with enhanced spin–orbit coupling for panchromatic dye-sensitized solar cells. J. Mater. Chem. A 2020, 8 (25), 12361-12369.
13. McClure, D. S., Spin‐orbit interaction in aromatic molecules. J. Chem. Phys. 1952, 20 (4), 682-686.
14. Xiaoyi Zhang, M. P., Klaus B. Møller, Jianxin Zhang and Sophie E. Canton, Characterizing the solvated structure of photoexcited [Os(terpy)2]2+ with x-ray transient absorption spectroscopy and DFT calculations. Molecules 2016, 21, 235.
15. Jia Zhang, B. H., Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells Nano Energy 2020, 76, 104999.
16. Kinoshita, T.; Fujisawa, J.; Nakazaki, J.; Uchida, S.; Kubo, T.; Segawa, H., Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J Phys Chem Lett 2012, 3 (3), 394-398.
17. Rodriguez-Serrano, A.; Rai-Constapel, V.; Daza, M. C.; Doerr, M.; Marian, C. M., Internal heavy atom effects in phenothiazinium dyes: enhancement of intersystem crossing via vibronic spin-orbit coupling. Phys. Chem. Chem. Phys. 2015, 17 (17), 11350-11358.
18. Swetha, T.; Reddy, K. R.; Singh, S. P., Osmium polypyridyl complexes and their applications to dye-sensitized solar cells. Chemical record 2015, 15 (2), 457-74.
19. Ayman A. Abdel-Shafi, D. R. W. a. A. Y. E. c., Photosensitized generation of singlet oxygen from ruthenium(II) and osmium(II) bipyridyl complexes. Dalton Trans. 2004, 30-36.
20. Zhang, X.; Canton, S. E.; Smolentsev, G.; Wallentin, C. J.; Liu, Y.; Kong, Q.; Attenkofer, K.; Stickrath, A. B.; Mara, M. W.; Chen, L. X.; Warnmark, K.; Sundstrom, V., Highly accurate excited-state structure of [Os(bpy)2dcbpy]2+ determined by x-ray transient absorption spectroscopy. J. Am. Chem. Soc. 2014, 136 (24), 8804-8809.
21. Ronca, E.; De Angelis, F.; Fantacci, S., Time-dependent density functional theory modeling of spin–orbit coupling in ruthenium and osmium solar cell sensitizers. J. Phy. Chem. C 2014, 118 (30), 17067-17078.
22. Wu, K. L.; Ho, S. T.; Chou, C. C.; Chang, Y. C.; Pan, H. A.; Chi, Y.; Chou, P. T., Engineering of osmium(II)-based light absorbers for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2012, 51 (23), 5642-5646.
23. G. Te Velde, F. M. B., E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Zieglers, Chemistry with ADF. J. Comput. Chem. 2001, 22, 931-967.
24. Fantacci, S.; Ronca, E.; De Angelis, F., Impact of spin-orbit coupling on photocurrent generation in ruthenium dye-sensitized solar cells. J. Phys. Chem. Lett 2014, 5 (2), 375-380.
25. van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G., Relativistic regular two-component Hamiltonians. Int. J. Quantum Chem 1996, 57 (3), 281-293.
26. Lenthe, E. v.; Snijders, J. G.; Baerends, E. J., The zero‐order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 1996, 105 (15), 6505-6516.
27. Wang, F.; Ziegler, T., A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect. J. Chem. Phys. 2005, 123 (15), 154102.
28. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
29. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter 1992, 46 (11), 6671-6687.
30. Schott, E.; Zarate, X.; Arratia-Perez, R., Substituents effects on two related families of dyes for dye sensitized solar cells: [Ru(4,4′-R,R-2,2′-bpy)3]2+ and [Ru(4,4′-COOH-2,2′-bpy)(4,4′-R,R-2,2′-bpy)2]2+. J. Phys. Chem. A 2012, 116 (27), 7436-7442.
31. S. P. McGlynn, S. M. G., T. Azumi, M. Kinoshita, Molecular spectroscopy of the triplet state. Prentice-Hall 1969.
32. Takumi Kinoshita, J. T. D., Satoshi Uchida, Takaya Kubo and Hiroshi Segawa, Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nat. Photon 2013, 7, 535-539.
33. Slovenski, Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. IEC 2016, 3, 219.
34. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chem. Rev. 2010, 110 (11), 6595-6663.
35. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123 (8), 1613-1634.
36. Zhang, L.; Cole, J. M., Dye aggregation in dye-sensitized solar cells. J. Mater. Chem. A 2017, 5 (37), 19541-19559.
37. Nguyen, T. D.; Lin, C. H.; Wu, C. G., Effect of the CF3 substituents on the charge-transfer kinetics of high-efficiency cyclometalated ruthenium sensitizers. Inorg. Chem. 2017, 56 (1), 252-260.
38. Li, C.; Wu, S. J.; Wu, C. G., Structural design of ruthenium sensitizer compatible with cobalt electrolyte for a dye-sensitized solar cell. J. Mater. Chem. A 2014, 2 (41), 17551-17560.
39. Kruger, J.; Plass, R.; Gratzel, M.; Cameron, P. J.; Peter, L. M., Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 2003, 107 (31), 7536-7539.
40. Pazoki, M.; Cappel, U. B.; Johansson, E. M. J.; Hagfeldt, A.; Boschloo, G., Characterization techniques for dye-sensitized solar cells. Energ Environ. Sci. 2017, 10 (3), 672-709. |