參考文獻 |
1. Everett, D. H., MANUAL OF SYMBOLS AND TERMINOLOGY FOR PHYSICOCHEMICAL QUANTITIES AND UNITS APPENDIX II Definitions, Terminology and Symbols in Colloid and Surface Chemistry PART I. Pure Apple. Chem. 1972, 31, 578-638.
2. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 2002, 54 (1), 47-58.
3. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
4. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascon, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater. 2009, 163 (1), 213-21.
5. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater. 2011, 192 (1), 277-83.
6. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. J. Mater. Chem. 2006, 16 (24).
7. Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K., Adsorption and activity of cytochrome c on mesoporous silicates. Chem. Commun. 2001, (5), 465-465.
8. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. J. Mater. Sci. 2017, 52 (11), 6322-6340.
9. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols. J. Phys. Chem. C 2012, 116 (11), 6512-6519.
10. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6 (19), 7186-7192.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous Mesoporous Mater. 2017, 247, 23-30.
13. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chem. Phys. Lett. 2004, 396 (4-6), 252-255.
14. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 1996, 8 (8), 1682-1701.
15. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. Engl. 2006, 45 (20), 3216-51.
16. Gibson, L. T., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chem. Soc. Rev. 2014, 43 (15), 5163-72.
17. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chem Commun (Camb) 2013, 49 (10), 943-6.
18. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. J. Am. Chem. Soc. 2005, 127 (20), 7601-7610.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 1976, 72 (0), 1525-1568.
20. Zhang, J.; Li, X.; Li, X., Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Prog. Polym. Sci. 2012, 37 (8), 1130-1176.
21. Evans, D. F.; W., H., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999, (2nd Edition).
22. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843.
23. Han, L.; Che, S., An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Adv. Mater. 2018, 30 (17), 1705708.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 179 (5350), 548.
25. Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. j. Phys. Chem. C 2007, 111 (23), 8268-8277.
26. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, (17), 2136-2137.
27. Almar, L.; Colldeforns, B.; Yedra, L.; Estradé, S.; Peiró, F.; Morata, A.; Andreu, T.; Tarancón, A., High-temperature long-term stable ordered mesoporous Ni–CGO as an anode for solid oxide fuel cells. J. Mater. Chem. A 2013, 1 (14), 4531-4538.
28. Fujita, S.; Inagaki, S., Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities. Chem. Mater. 2008, 20 (3), 891-908.
29. Steel, A.; Carr, S. W.; Anderson, M. W., 29Si solid-state NMR study of mesoporous M41S materials. Chem. Mater. 1995, 7, 1892-1832.
30. Kim, M. H.; Blangord, C. F.; Stein, A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chem. Mater. 1998, 10, 467-470.
31. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping Enzyme in a Functionalized Nanoporous Support. J. Am. Chem. Soc. 2002, 124 (38), 11242-11243.
32. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces. Chem. Commun. 2003, (3), 370-371.
33. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chem. Commun. 2003, (14), 1772-1773.
34. Yang, C.-m.; Wang, Y.; Zibrowius, B.; Schüth, F., Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15. Phys. Chem. Chem. Phys. 2004, 6 (9), 2461-2467.
35. Yiu, H. H. P.; Wright, P. A., Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid. J. Mater. Chem. 2005, 15 (35-36), 3690-3700.
36. Rosenholm, J. M.; Linden, M., Towards establishing structure-activity relationships for mesoporous silica in drug delivery applications. J. Controlled Release 2008, 128 (2), 157-64.
37. Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S.; Fey, G. T.; Kao, H. M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chem. Commun. 2009, (33), 5018-20.
38. Tsai, C. H.; Chang, W. C.; Saikia, D.; Wu, C. E.; Kao, H. M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. J. Hazard. Mater. 2016, 309, 236-48.
39. Hagh, B. F.; Allen, D. T., Catalytic hydroprocessing of chlorinated benzenes. Chem. Eng. Sci. 1990, 45 (8), 2695-2701.
40. Kawabata, T.; Atake, I.; Ohishi, Y.; Shishido, T.; Tian, Y.; Takaki, K.; Takehira, K., Liquid phase catalytic hydrodechlorination of aryl chlorides over Pd–Al-MCM-41 catalyst. Appl. Catal., B 2006, 66 (3-4), 151-160.
41. Wang, X.; Liu, Q.; Xiao, Z.; Chen, X.; Shi, C.; Tao, S.; Huang, Y.; Liang, C., In situ synthesis of Au–Pd bimetallic nanoparticles on amine-functionalized SiO2 for the aqueous-phase hydrodechlorination of chlorobenzene. RSC Adv. 2014, 4 (89), 48254-48259.
42. Mallick, S.; Rana, S.; Parida, K., Liquid Phase Hydrodechlorination of Chlorobenzene over Bimetallic Supported Zirconia Catalyst. Ind. Eng. Chem. Res. 2011, 50 (22), 12439-12448.
43. Hara, T.; Mori, K.; Oshiba, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K., Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen. Green Chem. 2004, 6 (10).
44. Bonarowska, M.; Kaszkur, Z.; Kępiński, L.; Karpiński, Z., Hydrodechlorination of tetrachloromethane on alumina- and silica-supported platinum catalysts. Appl. Catal., B 2010, 99 (1-2), 248-256.
45. Aresta, M.; Dibenedetto, A.; Fragale, C.; Giannoccaro, P.; Pastore, C.; Zammiello, D.; Ferragina, C., Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere 2008, 70 (6), 1052-8.
46. Mishakov, I.; Chesnokov, V.; Buyanov, R.; Pakhomov, N., Decomposition of Chlorinated Hydrocarbons on Iron-Group Metals. Kinet. Catal. 2001, 42, 543-548.
47. Cecilia, J. A.; Infantes-Molina, A.; Rodriguez-Castellon, E.; Jimenez-Lopez, A., Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents. J. Hazard. Mater. 2013, 260, 167-75.
48. Xu, Y.; Ma, J.; Xu, Y.; Li, H.; Li, H.; Li, P.; Zhou, X., Nickel nanoparticles embedded in the framework of mesoporous TiO2: Efficient and highly stable catalysts for hydrodechlorination of chlorobenzene. Appl. Catal., A 2012, 413-414, 350-357.
49. Rath, D.; Parida, K. M., Copper and Nickel Modified MCM-41 An Efficient Catalyst for Hydrodehalogenation of Chlorobenzene at Room Temperature. Ind. Eng. Chem. Res. 2011, 50 (5), 2839-2849.
50. Nriagu, J. O., Chromium in the Natural and Human Environments. 1988, Wiley-Interscience: New York, 81-105.
51. Zhu, K.; Chen, C.; Xu, H.; Gao, Y.; Tan, X.; Alsaedi, A.; Hayat, T., Cr(VI) Reduction and Immobilization by Core-Double-Shell Structured Magnetic Polydopamine@Zeolitic Idazolate Frameworks-8 Microspheres. ACS Sustain. Chem. Eng. 2017, 5 (8), 6795-6802.
52. Zhu, K.; Gao, Y.; Tan, X.; Chen, C., Polyaniline-Modified Mg/Al Layered Double Hydroxide Composites and Their Application in Efficient Removal of Cr(VI). ACS Sustain. Chem. Eng. 2016, 4 (8), 4361-4369.
53. Gao, Y.; Chen, C.; Tan, X.; Xu, H.; Zhu, K., Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 2016, 476, 62-70.
54. Liu, M.; Wen, T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X., Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Trans. 2013, 42 (41), 14710-7.
55. World Health Organization, Guidelines for Drinking Water Quality, WHO, Press, Geneva. 2008.
56. USEPA. Toxicology Reviews of Hexavalent Chromium, CAS No.
18540-29-9; U.S. Environmental Protection Agency: Washington, DC. 1998.
57. Zhitkovich, A., Chromium in drinking water: sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24 (10), 1617-29.
58. Kyung, H.; Lee, J.; Choi, W., Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2 Suspensions under Visible-Light Illumination. Environ. Sci. Technol. 2005, 39 (7), 2376-2382.
59. Wei, Z.; Luo, S.; Xiao, R.; Khalfin, R.; Semiat, R., Characterization and quantification of chromate adsorption by layered porous iron oxyhydroxide: An experimental and theoretical study. J. Hazard. Mater. 2017, 338, 472-481.
60. Wei, Z.; Semiat, R., Applying a modified Donnan model to describe the surface complexation of chromate to iron oxyhydroxide agglomerates with heteromorphous pores. J. Colloid Interface Sci. 2017, 506, 66-75.
61. Rengaraj, S.; Yeon, K.-H.; Moon, S.-H., Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 2001, 87, 273-287.
62. Mori, K.; Dojo, M.; Yamashita, H., Pd and Pd–Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2013, 3 (6), 1114-1119.
63. Yadav, M.; Akita, T.; Tsumori, N.; Xu, Q., Strong metal–molecular support interaction (SMMSI): Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. J. Mater. Chem. 2012, 22 (25).
64. Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M., Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal., B 2016, 180, 53-64.
65. Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S. M., Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Separ. Purif. Technol. 2018, 197, 253-260.
66. Omole, M. A.; K’Owino, I. O.; Sadik, O. A., Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl. Catal., B 2007, 76 (1-2), 158-167.
67. Dandapat, A.; Jana, D.; De, G., Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl. Catal., A 2011, 396 (1-2), 34-39.
68. Yadav, M.; Xu, Q., Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem. Commun. 2013, 49 (32), 3327-9.
69. 潘育麒; 廖家秀; 高憲明, 固態核磁共振技術於孔洞材料之應用. 化學 2004, 66, 209-219.
70. 高憲明, 多核固態核磁共振於孔洞材料 結構鑑定之應用. 化學 2004, 62.
71. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723-1732.
72. Gregg, S. J.; Sing, K. S. W., Adsorption, Surface Area and Porosity 2nd ed., Academic press, New work. 1982.
73. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schuth, F., Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chem. Mater. 2004, 16, 2918-2925.
74. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. J. Power Sources 2013, 243, 431-435.
75. Chen, C. S.; Chen, C. C.; Chen, C. T.; Kao, H. M., Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chem. Commun. 2011, 47 (8), 2288-90.
76. Tian, X.; Liu, M.; Iqbal, K.; Ye, W.; Chang, Y., Facile synthesis of nitrogen-doped carbon coated Fe3O4/Pd nanoparticles as a high-performance catalyst for Cr (VI) reduction. Journal of Alloys and Compounds 2020, 826. |