博碩士論文 106626007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.35.234
姓名 陳信印(CHEN,XIN-YIN)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 1980-2018年期間西北太平洋颱風大小變化之研究
(A Study of the Size of Typhoons in the Western North Pacific from 1980 to 2018)
相關論文
★ 利用衛星估計西北太平洋及南海颱風季節之垂直溫度結構★ 二月份最強颱風:Wutip (2019) 之 大氣與海洋條件
★ 颱風 Bavi (2020) 在東中國海淺海異常增強★ 1999~2018年期間南海沿岸淺水區對颱風登陸時強度變化之影響
★ 利用數值模式探討近岸海表面溫度對登陸颱風強度之影響★ 利用耦合模式探討颱風Bavi (2020)在東海的增強過程
★ 應用鍶-釹-鉛同位素探討大氣與水體環境中金屬來源與傳輸過程之研究★ 探究環境變化對原核生物群落生態系統功能的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 颱風需要從海洋中獲取成長所需要的能量並且透過大氣過程逐漸壯大,因此颱風在大氣條件和海洋條件都處於有利的情況下才能夠持續發展。而構成有利的海洋條件需要有溫暖的海水,當海水溫度越高,颱風從海洋所能汲取到的能量也就越多,因此颱風就更有機會發展得更好。然而,當颱風經過海水表面時,其帶來的強風會導致海表溫度冷卻(Sea Surface Temperature cooling;SST cooling)。一般來說,當颱風擁有較大的大小、較慢的移動速度以及較冷的海水次表面條件,會使海水出現較強的冷卻,其海水冷卻的幅度與颱風大小成正比。由於海水的冷卻降低了海洋和大氣的溫度差,使海水能夠輸送到颱風的能量受到影響,對颱風形成負反饋機制,進而使颱風能汲取到的能量減少影響颱風的強度發展。因此,從海氣能量傳輸的角度而言,颱風大小在颱風的增強過程中扮演著非常重要的關鍵因子。
本研究利用美國國家環境預測中心(National Centers for Environmental Prediction;NCEP)氣候預測系統再分析(Climate Forecast System Reanalysis;CFSR)的風場資料對西北太平洋1980~2018年共計39年的颱風進行大小計算,採用颱風中心與颱風外核(outer core)達到17 m/s風速的距離(Radius of 17 m/s;R17)作為颱風的大小,通過使用兩個回歸方程並區分三種情況,即CFSR強度大於或等於17 m/s、CFSR強度低於17 m/s、CFSR大小修正後為負值,並進行相對應的大小計算,最後算出從1980~2018年所有颱風個案(16658筆)的大小,建立了長達39年的颱風大小氣候值,然後使用此大小氣候值進行研究。
從1980~2018年所有颱風個案的統計,得出西北太平洋的平均大小為2.03度。在月平均大小上出現了季節性的大小變化,2月份最小,9和10月最大,在年平均大小上則出現了下降的趨勢。年平均大小與較強的聖嬰和反聖嬰現象則有較高的相關性,兩者的相關係數為0.68。對極端的大小個案進行趨勢檢測發現極端大小的個案數量呈現顯著的下降,趨勢檢測的P值達到0.005。對各個強度的年平均大小進行趨勢檢測發現Cat.1、Cat4、Cat.5的颱風大小出現顯著的年平均大小下降,趨勢檢測的P值分別為0.042、0.031、0.039。對各個移動速度的年平均大小進行趨勢檢測發現僅移動速度  12m/s的颱風大小出現顯著的年平均大小下降,趨勢檢測的P值為0.018。對各個緯度的年平均大小進行趨勢檢測發現在緯度30~35度的年平均大小出現顯著的下降,趨勢檢測的P值為0.003。
摘要(英) The typhoon needs to obtain the energy for growth from the ocean through the atmospheric process. Therefore, the typhoon can continue to develop only when the atmospheric and ocean conditions are favorable. Favorable ocean conditions require warm sea water. The higher sea water temperature, the typhoon can extract more energy from the ocean, so the typhoon has a better chance to develop better. However, when a typhoon passes over the surface of the sea, the sea surface wind will cause Sea Surface Temperature cooling(SST Cooling). Generally speaking, when a typhoon has a larger size, slower moving speed and colder seawater subsurface conditions, the seawater will be strongly cooled, and the extent of the seawater cooling is proportional to the size of the typhoon. Since the cooling of sea water reduces the temperature difference between the ocean and the atmosphere, the energy that the sea water can transport to the typhoon is affected, and a negative feedback mechanism is formed for the typhoon, thereby reducing the energy extracted by the typhoon and affecting the intensity of the typhoon. Therefore, from the perspective of air-sea energy transmission, the size of the typhoon plays a very important key factor in the strengthening process of the typhoon.
This study uses the wind field data reanalyzed by NCEP CFSR (National Centers for Environmental Prediction Climate Forecast System Reanalysis) to calculate the size of typhoons in the Northwest Pacific from 1980 to 2018 for a total of 39 years. The distance between the typhoon center and the 17m/s wind of the typhoon outer core (R17) is used as the typhoon size. By using two regression equations and distinguishing three situations, that is, the CFSR intensity is greater than or equal to 17 m/s, the CFSR intensity is less than 17 m/s, and the CFSR size is negative after correction, and then the typhoon size is calculated. the size of all typhoon cases (16,658 cases) from 1980 to 2018 was finally calculated, and a 39-year climatology of typhoon size was established, then use the climatology of typhoon size for this study.
From the statistics of all typhoon cases from 1980 to 2018, the average size of the Northwest Pacific Ocean is 2.03 degrees. On the monthly average size, there has been a seasonal change in size, the smallest in February, the largest in September and October; on the annual average size, there has been a downward trend. The annual average size is higher correlation with stronger ENSO events, the correlation coefficient is 0.68. The trend detection of extreme size cases found that the number of extreme size cases showed a significant decrease, and the P-value of the trend detection reached 0.005. The trend detection of the typhoon annual average size of different intensities found that Cat.1、Cat.4、Cat.5 showed a significant decrease in annual average size. The trend detection of the typhoon annual average size of different translation speeds found that only the annual average size with a translation speed of 12m/s showed a significant decrease, the P-value of the trend detection was 0.018. The trend detection of the typhoon annual average size of different latitudes found that the annual average size of the latitude 30~35 degrees showed a significant decrease, and the P-value of the trend detection was 0.003.
關鍵字(中) ★ CFSR再分析資料
★ 颱風大小
★ 趨勢檢測
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
第一章、緒論 1
1.1、研究動機 1
1.2、相關論文回顧 2
1.2.1、颱風大小的重要性 2
1.2.2、影響颱風大小變化的因子 3
1.2.3、颱風大小變化帶來的影響 5
1.2.4、全球的颱風大小變化 7
1.3、研究目標與論文架構 9
第二章、使用資料 10
2.1、颱風最佳路徑 10
2.2、NCEP CFSR 11
2.3、衛星 13
2.3.1、QuikScat 13
2.3.2、ASCAT 14
第三章、颱風大小定義和計算方法 15
3.1、定義颱風大小 15
3.2、颱風大小計算 16
3.2.1、步驟一 : 颱風的資料篩選 16
3.2.2、步驟二 : 計算用於重新定位的區域 17
3.2.3、步驟三 : 對颱風中心重新定位 17
3.2.4、步驟四 : 計算颱風大小半徑 17
3.3、回歸方程 18
3.3.1、從衛星獲得大小的計算 18
3.3.2、QuikScat和ASCAT的回歸方程 20
3.3.3、QuikScat和ASCAT的觀測誤差 22
3.4、特殊情況的處理 22
第四章、研究結果與分析 24
4.1、颱風的月平均大小 24
4.1.1、1980~2010年的月平均大小 24
4.1.2、1980~2018年的月平均大小 24
4.2、颱風的年平均大小 25
4.3、颱風大小的緯度分布 26
4.4、衛星觀測的年平均大小 27
4.5、年平均大小與ENSO的相關性 29
4.6、極端大小的趨勢分析 30
4.7、各個強度的颱風年平均大小 30
4.8、各個移動速度的颱風年平均大小 32
4.9、各個緯度的颱風年平均大小 34
第五章、結論與未來工作 36
參考文獻 40
附表 44
附圖 58
參考文獻 吳聖宇和周昆炫(2017)。颱風壯度與大小對台灣風雨之影響。中國文化大學地學研究所大氣科學組,碩士論文,79頁。
Bell GD, Halpert MS, Schnell RC, Higgins RW, Lawrimore J, Kousky VE, Tinker R, Thiaw W, Chelliah M, Artusa A, (2000) : Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1–S50.
Camargo, S. J., and A. H. Sobel, (2005) : Western North Pacific Tropical Cyclone Intensity and ENSO. J. Climate, 18, 2996–3006.
Chan, K. T. F. and J. C. L. Chan, (2012) : Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data. Mon. Wea. Rev., 140, 811-824.
Chan, K. T. F., and J. C. L. Chan, (2013) : Angular Momentum Transports and Synoptic Flow Patterns Associated with Tropical Cyclone Size Change. Mon. Wea. Rev., 141, 3985–4007.
Chan, K. T. F. and J. C. L. Chan, (2014) : Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quarterly Journal of the Royal Meteorological Society, 140, 2235-2248.
Chan, K. T. F. and J. C. L. Chan, (2015a) : Impacts of vortex intensity and outer winds on tropical cyclone size. Quarterly Journal of the Royal Meteorological Society, 141, 525-537.
Chan, K. T. F. and J. C. L. Chan, (2015b) : Global climatology of tropical cyclone size as inferred from QuikSCAT data. International Journal of Climatology, 35, 4843-4848.
Chu, J. H., Sampson, C. R., Levine, A. S., Fukada, E, (2002) : The joint typhoon warning center tropical cyclone best-tracks, 1945–2000. Ref, NRL/MR/7540‐02, 16.

Chan JCL, Yip CKM, 2003. Interannual variations of tropical cyclone size over the western North Pacific. Geophysical Research Letters. 30, 2267.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, (2004) : Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci., 61, 843–858
Emanuel K. (2005) : Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.
Emanuel, K., S. Ravela, E. Vivant, and C. Risi, (2006) : A Statistical Deterministic Approach to Hurricane Risk Assessment. Bull. Amer. Meteor. Soc., 87, 299–314.
Frank, W. M., and W. M. Gray, (1980) : Radius and Frequency of 15 m s−1 (30 kt) Winds around Tropical Cyclones. J. Appl. Meteor., 19, 219–223.
Hill, K. A., and G. M. Lackmann, (2009) : Influence of Environmental Humidity on Tropical Cyclone Size. Mon. Wea. Rev., 137, 3294–3315.
Kemdall, M.G., (1975) : Rank correlation methods. Charles Griffin, London.
Lin, I., C. Wu, I. Pun, and D. Ko, (2008) : Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Mon. Wea. Rev., 136, 3288–3306.
Liu KS, Chan JCL, (1999) : Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Weather Rev., 127, 2992–3001.
Liu KS, Chan JCL, (2002) : Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Weather Rev. 130, 2134–2142.
Lin, I., C. Wu, K. A. Emanuel, I. Lee, C. Wu, and I. Pun, (2005) : The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Mon. Wea. Rev., 133, 2635–2649.
Lin, C. -Y., Hsu, H. -ming, Sheng, Y. -F., Kuo, C. -H., & Liou, Y. -A, (2011) : Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009) over Southern Taiwan. Atmospheric Chemistry And Physics, 11, 345-361.
Lin, S., and K. Chou, (2018) : Characteristics of Size Change of Tropical Cyclones Traversing the Philippines. Mon. Wea. Rev., 146, 2891–2911.
Mann, H.B., (1945) : Non-parametric test against trend. Econometrica, 13,245-259.
Merrill, R. T., (1984) : A Comparison of Large and Small Tropical Cyclones. Mon. Wea. Rev., 112, 1408–1418.
Derek K. H. Mok, Johnny C. L. Chan, Kelvin T. F. Chan, (2018) : A 31-year climatology of tropical cyclone size from the NCEP Climate Forecast System Reanalysis. International Journal of Climatology, 38: e796-e806.
Price, J., T. Sanford, and G. Forristall, (1994) : Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.
Powell, M. D., and T. A. Reinhold, (2007) : Tropical Cyclone Destructive Potential by Integrated Kinetic Energy. Bull. Amer. Meteor. Soc., 88, 513–526.
Pielke Jr, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., Musulin, R., (2008) : Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 29–42.
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Nordbeck, O., (2012) : Global trends in tropical cyclone risk. Nature climate change, 2, 289–294.
Pun, I., I. Lin, C. Lien, and C. Wu, (2018) : Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Mon. Wea. Rev., 146, 661–677.
Pun, I., Chan, J., Lin, I., Chan, K.T., Price, J.F., Ko, D., Lien, C., Wu, Y., Huang, H., (2019) : Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11, 3709.
Shea DJ, Gray WM, (1973) : The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30: 1544–1564.
Schenkel, B. A., and R. E. Hart, (2012) : An Examination of Tropical Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric Reanalysis Datasets. J. Climate, 25, 3453–3475.
Saha, S., and Coauthors, (2010) : The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058.
Saha, S., and Coauthors, (2014) : The NCEP Climate Forecast System Version 2. J. Climate, 27, 2185–2208.
Sun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., Li, Q, (2017) : Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness. Sci Rep., 7, 1-10.
Trenberth, K., Cheng, L., Jacobs, P., Zhang, Y., & Fasullo, J., (2018) : Hurricane Harvey Links to Ocean Heat Content and Climate Change Adaptation. Earth’s Future, 6, 730-744.
指導教授 潘任飛 審核日期 2021-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明