博碩士論文 104881608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.118.140.78
姓名 楊杰龍(John Jackson Yang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(The Probiotic Activity of Human Microbiome Against Methicillin-Resistant Staphylococcus aureus Infection and Obesity)
相關論文
★ 產生丁酸的益生菌對異位性皮膚炎和第一型糖尿病的 影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 益生菌,一種共生細菌能用於防止病原體在宿主體內定殖,已顯示出是一種預防及治療感染有前途的方法。耐甲氧西林金黃色葡萄球菌(S. aureus)(MRSA)已成為對公共衛生和軟組織感染的主要威脅。由於其對多種傳統抗生素的強大耐藥性,開發有效的MRSA治療方法仍是一項尚未解決的挑戰。第一項研究表明,從人皮膚中分離出的共生金黃色葡萄球菌具有介導甘油發酵產生短鏈脂肪酸(SCFA)的能力,短鏈脂肪酸可被定義為皮膚先天免疫力的一部分,可抑制USA300的生長。透過蛋白質組學定量分析甘油發酵中酶的表達,共生金黃色葡萄球菌中六種酶包括3-磷酸甘油脫氫酶(GPDH)和磷酸甘油酸變位酶(PGM)的表達水平比普通USA300高三倍。蛋白質印跡表明USA300、MRSA252(一種醫院獲得的MRSA菌株)和非抗藥性金黃色葡萄球菌(MSSA)中GPDH的低表達水平。在甘油存在下,共生金黃色葡萄球菌在體外和體內均能有效抑制USA300的生長。用共生金黃色葡萄球菌的裂解物或重組α-溶血素主動免疫小鼠,或用中和血清被動免疫可提供針對USA300皮膚感染的免疫保護。由於抗體可以提供抗金黃色葡萄球菌感染的保護,因此我們推測,共生金黃色葡萄球菌激發血液中的天然抗體是宿主適應性免疫的重要組成部分,可防止USA300 MRSA的生長。為傷口選擇合適的敷料,包括定植或感染MRSA的傷口,應根據患者的無菌類型和濕潤傷口癒合的原則來確定。由於水凝膠的特殊特性,例如對生理環境高度敏感,親水性,類軟組織水含量和足夠的柔韌性,使其成為生物醫學應用的極佳候選者。
在第二項研究中,我們製作了一個能夠吸收和釋放銅的半胱氨酸水凝膠,銅是一種具有抑制USA300生長能力的離子。傅立葉變換紅外光譜(FTIR)的分析結果表明,銅與半胱氨酸的水凝膠結合。在癌症研究所(ICR)小鼠背側皮膚上USA300感染的皮膚傷口上局部結合半胱氨酸與銅結合的水凝膠可顯著增強傷口癒合,阻礙USA300的生長並減少促炎物質的產生巨噬細胞炎症蛋白2-alpha(MIP-2)細胞因子。我們證明了新設計的水凝膠結合了一個半胱氨酸分子與銅結合可以螯合各種抗菌金屬,作為一種新型的傷口敷料。不僅在皮膚中,而且腸道益生菌在體內的存在都有有益的作用。腸道益生菌能夠調節整個身體的營養吸收,並調節體重,降低包括肥胖在內的多種疾病的發展。
第三項研究為腸膜腸球菌(Leuconostoc mesenteroides)(L. mesenteroides)對高脂飲食(HFD)誘導的PPAR-γ活化和腹部脂肪的益生作用。分化的3T3-L1脂肪細胞與產丁酸的腸膜腸球菌EH-1可顯著減少油滴的數量。腸膜腸球菌EH-1的口服在盲腸中產生大量(> 1 mM)丁酸,並減弱了HFD誘導的PPAR-γ上調和小鼠腹部脂肪的累積。2%葡萄糖與腸膜腸球菌EH-1的結合增加了丁酸的產生,並增強了腸膜腸球菌EH-1對3T3-L1脂肪細胞中脂滴形成以及HFD-腹部脂肪的益生菌活性 餵老鼠。藉由拮抗劑GLPG-0974對游離脂肪酸受體2(Ffar2)的抑製作用,腸膜腸球菌EH-1和葡萄糖對抑制HFD誘導的PPAR-γ和腹部脂肪的益生作用明顯降低。除了證明腸膜腸球菌的益生菌價值外,我們的結果強調了針對丁酸激活的Ffar2途徑以減少腹部脂肪的可能療法。
摘要(英) Probiotic bacteria, in which commensal bacteria are used to prevent the colonization of the host by pathogens, have been shown to be a promising modality for the prevention and treatment of infections. The methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) has become a major threat to public health and soft tissue infections. It remains an unmet challenge to develop effective therapeutic approaches for MRSA treatment because of its formidable resistance against multiple traditional antibiotics. The first study showed that commensal S. aureus bacteria isolated from human skin demonstrated the ability to mediate the glycerol fermentation to produce short-chain fatty acids (SCFAs), which can be defined as a part of skin innate immunity to inhibited the growth of USA300. Quantitative proteomic analysis of enzymes involved in glycerol fermentation demonstrated that the expression levels of six enzymes, including glycerol-3-phosphate dehydrogenase (GPDH) and phosphoglycerate mutase (PGM), in commensal S. aureus are more than three-fold higher than those in USA300. Western blotting validated the low expression levels of GPDH in USA300, MRSA252 (a strain of hospital-acquired MRSA), and invasive methicillin-susceptible S. aureus (MSSA). In the presence of glycerol, commensal S. aureus effectively suppressed the growth of USA300 in vitro and in vivo. Active immunization of mice with lysates or recombinant α-hemolysin of commensal S. aureus or passive immunization with neutralizing sera provided immune protection against the skin infection of USA300. As antibodies could offer protection against S. aureus infection, we speculated that natural antibodies in the bloodstream provoked by commensal S. aureus are a crucial part of host adaptive immunity to prevent the colonization of USA300 MRSA.
MRSA is often isolated from patient wounds, either in the hospital and community setting. Choosing a suitable dressing for any wound, including those colonized or infected with MRSA, should be determined by the type of wound a patient has in line with the principles of asepsis and moist wound healing. Due to hydrogels′ peculiar properties, such as high-sensitive to physiological environments, hydrophilic nature, soft tissue-like water content, and adequate flexibility, make them excellent candidates for biomedical applications. In the second study, we created a cysteine-capped hydrogel able to absorb and release copper, an ion with the capability of suppressing the growth of USA300, a community-acquired MRSA. The results of the analysis of Fourier transform infrared spectroscopy (FTIR) revealed the binding of copper to a cysteine-capped hydrogel. The topical application of a cysteine-capped hydrogel binding with copper on USA300-infected skin wounds in the dorsal skin of the Institute of Cancer Research (ICR) mice significantly enhanced wound healing, hindered the growth of USA300, and reduced the production of pro-inflammatory macrophage inflammatory protein 2-alpha (MIP-2) cytokine. Our work demonstrates a newly designed hydrogel that conjugates a cysteine molecule for copper binding. The cysteine-capped hydrogel can potentially chelate various antimicrobial metals as a novel wound dressing.
Not only in the skin, but the presence of gut probiotic in the body has beneficial effects. The gut probiotic is capable of regulating nutrients acquisition throughout the body and eventually bodyweight, leading to the development of several diseases, including obesity. The third study aimed to investigate the probiotic effect of Leuconostoc mesenteroides (L. mesenteroides) on high-fat diet (HFD)-induced Peroxisome proliferator-activated receptor gamma (PPAR-γ) activation and abdominal fat depots. Incubation of differentiated 3T3-L1 adipocytes with media of L. mesenteroides EH-1, a butyric acid-producing strain, significantly reduced the amounts of lipid droplets. The oral administration of L. mesenteroides EH-1 produced large amounts (>1 mM) of butyric acid in the cecum and attenuated the HFD-induced upregulation of PPAR-γ and accumulation of abdominal fats in mice. The combination of 2% glucose with L. mesenteroides EH-1 increased the production of butyric acid and potentiated the probiotic activity of L. mesenteroides EH-1 against the formation of lipid droplets in 3T3-L1 adipocytes as well as abdominal fats in HFD-fed mice. The inhibition of free fatty acid receptor 2 (Ffar2) by its antagonist, GLPG-0974, markedly diminished the probiotic effects of L. mesenteroides EH-1 plus glucose on the suppression of HFD-induced PPAR-γ and abdominal fats. Besides demonstrating the probiotic value of L. mesenteroides EH-1, our results highlight the possible therapy targeting the butyric acid-activated Ffar2 pathway to reduce abdominal fats.
論文目次 Table of contents
摘要 ii
Abstract iii
Acknowledgement v
Table of contents vi
List of figures ix
List of table xi
Abbreviations xii
Chapter 1. Literature review 1
1.1. Methicillin-resistant Staphylococcus aureus (MRSA) infection 1
1.2. MRSA infection treatment 1
1.3. Probiotic function in the diseases 2
1.4. Short-chain fatty acids (SCFAs) 3
1.5. Abdominal adipose tissues 4
1.6. Rationale of the present study 5
1.6.1. Aims of the present study 5
1.6.2. Questions raised in the present study 5
1.6.3. Structure of the thesis 6
Chapter 2. Commensal Staphylococcus aureus provokes immunity to protect against skin infection of methicillin-resistant Staphylococcus aureus 8
2.1. Abstract 8
2.2. Introduction 8
2.3. Materials and Methods 11
2.3.1. Ethics statement 11
2.3.2. Bacterial culture, identification, glycerol fermentation and anti-USA300 overlay assays 11
2.3.3. Identification of SCFAs by NMR analysis 12
2.3.4. Mass spectrometric label-free protein quantification 12
2.3.5. Western blot 13
2.3.6. In vivo effects of S. aureus glycerol fermentation on skin infection of USA300 13
2.3.7. Molecular cloning and expression of recombinant α-hemolysin 14
2.3.8. Vaccination, antibody detection and protection against USA300 14
2.3.9. Antibody detection and test strip fabrication 15
2.3.10. Statistical analysis 15
2.4. Results 15
2.4.1. Interference of commensal S. aureus with the growth of USA300 15
2.4.2. Differential expression of enzymes in the pathway of glycerol fermentation 18
2.4.3. SCFAs in fermentation metabolites of commensal S. aureus and suppression of USA300 growth in vivo 21
2.4.4. Protection of skin infection of USA300 by antibodies to α-hemolysin of commensal S. aureus 24
2.5. Discussion 28
Chapter 3. Cysteine-capped hydrogels incorporating copper as effective antimicrobial materials against methicillin-resistant Staphylococcus aureus 32
3.1. Abstract 32
3.2. Introduction 32
3.3. Materials and Methods 35
3.3.1. Ethics statement 35
3.3.2. Synthesis of cysteine methacrylate (CysMA) 35
3.3.3. Preparation of CysMA/copper chloride hydrogel and 3-(acryloyloxy)-2-hydroxypropyl methacrylate/copper chloride hydrogel 36
3.3.4. Fourier transform infrared spectroscopy (FTIR) analysis 36
3.3.5. Copper ion absorption and releasing measurement of hydrogel 36
3.3.6. The antibacterial activity of hydrogel containing copper ions 37
3.3.7. The minimum bactericidal concentration (MBC) assays 37
3.3.8. Wound size infection on a mouse animal model 37
3.3.9. Bacterial counting 37
3.3.10. Statistical analysis 38
3.4. Results and Discussion 38
3.4.1. Preparation of CysMA monomer 38
3.4.2. Preparation of CysMA and MA Hydrogel and the Hydrogel Appearance 39
3.4.3. Absorption and Release Ability of CysMA and MA Hydrogels 41
3.4.4. FTIR Analysis 44
3.4.5. Antibacterial Test 45
3.4.6. Wound Infection Mouse Model 47
Chapter 4. Mouse abdominal fat depots reduced by butyric acid producing Leuconostoc mesenteroides 50
4.1. Abstract 50
4.2. Introduction 50
4.3. Materials and Methods 52
4.3.1. Ethics statement 52
4.3.2. Glucose fermentation of L. mesenteroides EH-1 52
4.3.3. 3T3-L1 cell differentiation and Oil Red O staining 53
4.3.4. Feeding mice with L. mesenteroides EH-1 and Ffar2 inhibition 53
4.3.5. Butyric acid detection by high performance liquid chromatography (HPLC) 54
4.3.6. PPAR-γ expression 54
4.3.7. Statistical analysis 55
4.4. Results 55
4.4.1. Reduction of lipid droplets in differentiated 3T3-L1 adipocytes by L. mesenteroides EH-1 55
4.4.2. In vivo production of butyric acid and reduction of HFD-induced abdominal fats by L. mesenteroides EH-1 57
4.4.3. Suppression of HFD-induced PPAR-γ upregulation by L. mesenteroides EH-1 59
4.4.4. Effects of Ffar2 inhibitor administration with L. mesenteroides EH-1 probiotic diet on PPAR-γ level in high-fat diet mice 60
4.5. Discussion 62
Chapter 5. Summary, concluding remarks, and future aspects 66
5.1. Summary 66
5.2. Concluding remarks 67
5.3. Future study 67
References 69
Appendix 1 77
Appendix 2 78
Appendix 3 81
參考文獻 Abdalla B.A., Chen J., Nie Q., Zhang X. (2018) Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model. Frontiers in genetics 9:262.
Abtin A., Jain R., Mitchell A.J., Roediger B., Brzoska A.J., Tikoo S., Cheng Q., Ng L.G., Cavanagh L.L., Von Andrian U.H. (2014) Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nature immunology 15:45-53.
Adhikari R.P., Thompson C.D., Aman M.J., Lee J.C. (2016) Protective efficacy of a novel alpha hemolysin subunit vaccine (AT62) against Staphylococcus aureus skin and soft tissue infections. Vaccine 34:6402-6407.
Akiba Y., Maruta K., Narimatsu K., Said H., Kaji I., Kuri A., Iwamoto K.-i., Kuwahara A., Kaunitz J.D. (2017) FFA2 activation combined with ulcerogenic COX inhibition induces duodenal mucosal injury via the 5-HT pathway in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology 313:G117-G128.
Almeida-Suhett C.P., Scott J.M., Graham A., Chen Y., Deuster P.A. (2019) Control diet in a high-fat diet study in mice: Regular chow and purified low-fat diet have similar effects on phenotypic, metabolic, and behavioral outcomes. Nutritional neuroscience 22:19-28.
Alswieleh A.M., Cheng N., Canton I., Ustbas B., Xue X., Ladmiral V., Xia S., Ducker R.E., El Zubir O., Cartron M.L. (2014) Zwitterionic Poly (amino acid methacrylate) Brushes. Journal of the American Chemical Society 136:9404-9413. DOI: https://doi.org/10.1021/ja503400r.
Association I.C.N. (2003) Asepsis: Preventing healthcare associated infection. ICNA, Bathgate.
Azari S., Zou L. (2013) Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid l-cysteine. Desalination 324:79-86. DOI: doi.org/10.1016/j.desal.2013.06.005.
Balasubramanian D., Harper L., Shopsin B., Torres V.J. (2017) Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and disease 75:ftx005. DOI: 10.1093/femspd/ftx005.
Borkow G., Gabbay J. (2005) Copper as a biocidal tool. Current medicinal chemistry 12:2163-2175.
Borkow G., Gabbay J., Zatcoff R.C. (2008) Could chronic wounds not heal due to too low local copper levels? Medical hypotheses 70:610-613.
Brisson E.R., Xiao Z., Connal L.A. (2016) Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery. Australian Journal of Chemistry 69:705-716. DOI: doi.org/10.1071/CH16028.
Brown L.C.W., Acker M.G., Clardy J., Walsh C.T., Fischbach M.A. (2009) Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proceedings of the National Academy of Sciences 106:2549-2553.
Burtenshaw J. (1942) The mechanism of self-disinfection of the human skin and its appendages. Journal of Hygiene 42:184-210.
Cammarota M., De Rosa M., Stellavato A., Lamberti M., Marzaioli I., Giuliano M. (2009) In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic: emphasis on innate immunity. International journal of food microbiology 135:90-98.
Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761-1772.
Chan L.C., Chaili S., Filler S.G., Miller L.S., Solis N.V., Wang H., Johnson C.W., Lee H.K., Diaz L.F., Yeaman M.R. (2017) Innate Immune Memory Contributes to Host Defense against Recurrent Skin and Skin Structure Infections Caused by Methicillin-Resistant Staphylococcus aureus. Infection and immunity 85:e00876-16.
Chen S., Li X., Liu L., Liu C., Han X. (2018) Ophiopogonin D alleviates high-fat diet–induced metabolic syndrome and changes the structure of gut microbiota in mice. The FASEB Journal 32:1139-1153.
Chien H.-W., Xu X., Ella-Menye J.-R., Tsai W.-B., Jiang S. (2012) High viability of cells encapsulated in degradable poly (carboxybetaine) hydrogels. Langmuir 28:17778-17784. DOI: doi.org/10.1021/la303390j.
Chmielewska-Kassassir M., Woźniak L., Ogrodniczek P., Wojcik M. (2013) The role of peroxisome proliferator-activated receptors γ (PPARγ) in obesity and insulin resistance. Postepy higieny i medycyny doswiadczalnej (Online) 67:1283-1299.
Cogen A., Nizet V., Gallo R. (2008) Skin microbiota: a source of disease or defence? British Journal of Dermatology 158:442-455.
Colque-Navarro P., Jacobsson G., Andersson R., Flock J.-I., Möllby R. (2010) Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. Clinical and Vaccine Immunology 17:1117-1123.
Dai T., Kharkwal G.B., Tanaka M., Huang Y.-Y., Bil de Arce V.J., Hamblin M.R. (2011) Animal models of external traumatic wound infections. Virulence 2:296-315.
den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research 54:2325-2340.
Dewulf E.M., Cani P.D., Neyrinck A.M., Possemiers S., Van Holle A., Muccioli G.G., Deldicque L., Bindels L.B., Pachikian B.D., Sohet F.M. (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. The Journal of nutritional biochemistry 22:712-722.
Dryla A., Prustomersky S., Gelbmann D., Hanner M., Bettinger E., Kocsis B., Kustos T., Henics T., Meinke A., Nagy E. (2005) Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clinical and diagnostic laboratory immunology 12:387-398.
Everard A., Matamoros S., Geurts L., Delzenne N.M., Cani P.D. (2014) Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 5:e01011-14.
Falagas M.E., Rafailidis P.I., Makris G.C. (2008) Bacterial interference for the prevention and treatment of infections. International journal of antimicrobial agents 31:518-522.
Feng Y., Chen C.-J., Su L.-H., Hu S., Yu J., Chiu C.-H. (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS microbiology reviews 32:23-37.
Ferguson J. (2009) Preventing healthcare‐associated infection: risks, healthcare systems and behaviour. Internal medicine journal 39:574-581. DOI: https://doi.org/10.1111/j.1445-5994.2009.02004.x.
Ferré P. (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53:S43-S50.
Findley K., Grice E.A. (2014) The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog 10:e1004436.
Fujishita S., Inaba C., Tada S., Gemmei-Ide M., Kitano H., Saruwatari Y. (2008) Effect of zwitterionic polymers on wound healing. Biological and Pharmaceutical Bulletin 31:2309-2315. DOI: doi.org/10.1248/bpb.31.2309.
Furusawa Y., Obata Y., Fukuda S., Endo T.A., Nakato G., Takahashi D., Nakanishi Y., Uetake C., Kato K., Kato T. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446-450.
Garland S. (2011) Short chain fatty acids may elicit an innate immune response from preadipocytes: a potential link between bacterial infection and inflammatory diseases. Medical hypotheses 76:881-883.
Ge H., Li X., Weiszmann J., Wang P., Baribault H., Chen J.-L., Tian H., Li Y. (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519-4526.
Goetghebeur M., Landry P.-A., Han D., Vicente C. (2007) Methicillin-resistant Staphylococcus aureus: a public health issue with economic consequences. Canadian Journal of Infectious Diseases and Medical Microbiology 18:27-34.
Grass G., Rensing C., Solioz M. (2011) Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77:1541-1547.
Gurusamy K.S., Koti R., Toon C.D., Wilson P., Davidson B.R. (2013) Antibiotic therapy for the treatment of methicillin‐resistant Staphylococcus aureus (MRSA) infections in surgical wounds. Cochrane Database of Systematic Reviews.
Haas A., Zimmermann K., Graw F., Slack E., Rusert P., Ledergerber B., Bossart W., Weber R., Thurnheer M.C., Battegay M. (2011) Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection. Gut 60:1506-1519.
Hague A., Butt A.J., Paraskeva C. (1996) The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? Proceedings of the Nutrition society 55:937-943.
Hall J.E. (2010) Guyton and Hall textbook of medical physiology e-Book Elsevier Health Sciences.
Haque N.Z., Arshad S., Peyrani P., Ford K.D., Perri M.B., Jacobsen G., Reyes K., Scerpella E.G., Ramirez J.A., Zervos M.J. (2012) Analysis of pathogen and host factors related to clinical outcomes in patients with hospital-acquired pneumonia due to methicillin-resistant Staphylococcus aureus. Journal of clinical microbiology 50:1640-1644.
Haraguchi K., Farnworth R., Ohbayashi A., Takehisa T. (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N, N-dimethylacrylamide) and clay. Macromolecules 36:5732-5741. DOI: doi.org/10.1021/ma034366i.
Heimann E., Nyman M., Degerman E. (2015) Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte 4:81-88.
Hemme D., Foucaud-Scheunemann C. (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. International Dairy Journal 14:467-494.
Hickey M., Carey J., Azevedo J., Houmard J., Pories W., Israel R., Dohm G. (1995) Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. American Journal of Physiology-Endocrinology And Metabolism 268:E453-E457.
Hong Y.-H., Nishimura Y., Hishikawa D., Tsuzuki H., Miyahara H., Gotoh C., Choi K.-C., Feng D.D., Chen C., Lee H.-G. (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146:5092-5099.
Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881-884.
Howlett N., Avery S. (1997) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Applied microbiology and biotechnology 48:539-545.
Huang K.-T., Fang Y.-L., Hsieh P.-S., Li C.-C., Dai N.-T., Huang C.-J. (2016) Zwitterionic nanocomposite hydrogels as effective wound dressings. Journal of Materials Chemistry B 4:4206-4215. DOI: 10.1039/C6TB00302H.
Huang K.-T., Huang C.-J. (2015) Novel zwitterionic nanocomposite hydrogel as effective chronic wound healing dressings, 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering, Springer. pp. 35-38.
Ibrahim M.M. (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity reviews 11:11-18.
Ingram L.O.N., Buttke T.M. (1985) Effects of alcohols on micro-organisms, Advances in microbial physiology, Elsevier. pp. 253-300.
Iván J., Major E., Sipos A., Kovács K., Horváth D., Tamás I., Bay P., Dombrádi V., Lontay B. (2017) The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem cells and development 26:1724-1733.
Jakobsdottir G., Xu J., Molin G., Ahrne S., Nyman M. (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PloS one 8.
Jayaramudu T., Varaprasad K., Reddy K.K., Pyarasani R.D., Akbari-Fakhrabadi A., Amalraj J. (2019) Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications. International journal of biological macromolecules. DOI: doi.org/10.1016/j.ijbiomac.2019.09.143.
Jenkins A., Diep B.A., Mai T.T., Vo N.H., Warrener P., Suzich J., Stover C.K., Sellman B.R. (2015) Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio 6:e02272-14.
Jerva L.F., Lolis E., Sullivan G. (1997) Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes. Protein science 6:1643-1652.
Jocken J.W., González Hernández M.A., Hoebers N.T., van der Beek C.M., Essers Y.P., Blaak E.E., Canfora E.E. (2018) Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Frontiers in endocrinology 8:372.
Johanningsmeier S., McFeeters R.F., Fleming H.P., Thompson R.L. (2007) Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. Journal of food science 72:M166-M172.
Kadowaki T., Hara K., Yamauchi T., Terauchi Y., Tobe K., Nagai R. (2003) Molecular mechanism of insulin resistance and obesity. Experimental Biology and Medicine 228:1111-1117.
Kao M.S., Huang S., Chang W.L., Hsieh M.F., Huang C.J., Gallo R.L., Huang C.M. (2016) Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin‐resistant Staphylococcus aureus. Biotechnology Journal.
Kao M.S., Huang S., Chang W.L., Hsieh M.F., Huang C.J., Gallo R.L., Huang C.M. (2017) Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin‐resistant Staphylococcus aureus. Biotechnology journal 12. DOI: doi.org/10.1002/biot.201600399.
Kawai T., Takei I., Oguma Y., Ohashi N., Tokui M., Oguchi S., Katsukawa F., Hirose H., Shimada A., Watanabe K. (1999) Effects of troglitazone on fat distribution in the treatment of male type 2 diabetes. Metabolism-Clinical and Experimental 48:1102-1107.
Kennedy A.D., Otto M., Braughton K.R., Whitney A.R., Chen L., Mathema B., Mediavilla J.R., Byrne K.A., Parkins L.D., Tenover F.C. (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proceedings of the National Academy of Sciences 105:1327-1332.
Kennedy A.D., Wardenburg J.B., Gardner D.J., Long D., Whitney A.R., Braughton K.R., Schneewind O., DeLeo F.R. (2010) Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. Journal of Infectious Diseases 202:1050-1058.
Khan S., Jena G. (2014) Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chemico-biological interactions 213:1-12.
Kimura I., Ozawa K., Inoue D., Imamura T., Kimura K., Maeda T., Terasawa K., Kashihara D., Hirano K., Tani T. (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature communications 4:1-12.
Klein E., Smith D.L., Laxminarayan R. (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerging infectious diseases 13:1840. DOI: 10.3201/eid1312.070629.
Klinkajon W., Supaphol P. (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomedical Materials 9:045008. DOI: 10.1088/1748-6041/9/4/045008.
Kluytmans J., Van Belkum A., Verbrugh H. (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews 10:505-520.
Kobayashi M., Ohno T., Hada N., Fujiyoshi M., Kuga M., Nishimura M., Murai A., Horio F. (2010) Genetic analysis of abdominal fat distribution in SM/J and A/J mice. Journal of lipid research 51:3463-3469.
Kraus N.A., Ehebauer F., Zapp B., Rudolphi B., Kraus B.J., Kraus D. (2016) Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 5:351-358.
Kubota N., Terauchi Y., Miki H., Tamemoto H., Yamauchi T., Komeda K., Satoh S., Nakano R., Ishii C., Sugiyama T. (1999) PPARγ mediates high-fat diet–induced adipocyte hypertrophy and insulin resistance. Molecular cell 4:597-609.
Lansdown A.B. (1995) Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Critical reviews in toxicology 25:397-462. DOI: doi.org/10.3109/10408449509049339.
Lavallée-Adam M., Rauniyar N., McClatchy D.B., Yates III J.R. (2014) PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data. Journal of proteome research 13:5496-5509.
Lee C.W., Chung S.W., Bae M.J., Song S., Kim S.-p., Kim K. (2015) Peptidoglycan up-regulates CXCL8 expression via multiple pathways in monocytes/macrophages. Biomolecules & therapeutics 23:564.
Lindh J.M., Terenius O., Faye I. (2005) 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Applied and environmental microbiology 71:7217-7223.
Liu P.-F., Cheng J.-S., Sy C.-L., Huang W.-C., Yang H.-C., Gallo R.L., Huang C.-M., Shu C.-W. (2015a) IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. Journal of Investigative Dermatology 135:2714-2722. DOI: 10.1038/jid.2015.254.
Liu S., Ren F., Zhao L., Jiang L., Hao Y., Jin J., Zhang M., Guo H., Lei X., Sun E. (2015b) Starch and starch hydrolysates are favorable carbon sources for Bifidobacteria in the human gut. BMC microbiology 15:54.
Liu X., Hu Y., Pai P.-J., Chen D., Lam H. (2014) Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. Journal of proteome research 13:1223-1233.
Lu Y., Fan C., Li P., Lu Y., Chang X., Qi K. (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific reports 6:1-13.
Matheus V., Monteiro L., Oliveira R., Maschio D., Collares-Buzato C. (2017) Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Experimental Biology and Medicine 242:1214-1226.
Mathews S., Hans M., Mücklich F., Solioz M. (2013) Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions. Applied and Environmental Microbiology 79:2605-2611. DOI: 10.1128/aem.03608-12.
Matsuzawa Y., Nakamura T., Shimomura I., Kotani K. (1995) Visceral fat accumulation and cardiovascular disease. Obesity research 3:645S-647S.
McNabney S.M., Henagan T.M. (2017) Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9:1348.
Mirastschijski U., Martin A., Jorgensen L.N., Sampson B., Ågren M.S. (2013) Zinc, copper, and selenium tissue levels and their relation to subcutaneous abscess, minor surgery, and wound healing in humans. Biological trace element research 153:76-83.
Morris C. (2006) Wound management and dressing selection. Wound Essentials 1:178-183.
Moynahan E. (1974) Acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet (London, England) 2:399. DOI: 10.1016/s0140-6736(74)91772-3.
Naesens R., Ronsyn M., Druwé P., Denis O., Ieven M., Jeurissen A. (2009) Central nervous system invasion by community-acquired meticillin-resistant Staphylococcus aureus. Journal of medical microbiology 58:1247-1251.
Naik S., Bouladoux N., Linehan J.L., Han S.-J., Harrison O.J., Wilhelm C., Conlan S., Himmelfarb S., Byrd A.L., Deming C. (2015) Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:104-108.
Nakagawa S., Matsumoto M., Katayama Y., Oguma R., Wakabayashi S., Nygaard T., Saijo S., Inohara N., Otto M., Matsue H. (2017) Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell host & microbe 22:667-677. e5.
Ndokoye P., Ke J., Liu J., Zhao Q., Li X. (2014) L-Cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media. Langmuir 30:13491-13497.
Nelson D.L., Cox M.M., Lehninger A.L. (2008) Principles of biochemistry Freeman New York:.
NeVille-Swensen M., Clayton M. (2011) Outpatient management of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infection. Journal of Pediatric Health Care 25:308-315.
Nguyen T.D., Prykhodko O., Hållenius F.F., Nyman M. (2019) Monobutyrin reduces liver cholesterol and improves intestinal barrier function in rats fed high-fat diets. Nutrients 11:308.
Ning J., Li G., Haraguchi K. (2014) Effects of Polymer Concentration on Structure and Properties of Zwitterionic Nanocomposite Gels. Macromolecular Chemistry and Physics 215:235-244.
Olawumi H., Olatunji P. (2001) Prevalence and titre of alpha and beta haemolysins in blood group′O′donors in Ilorin. African journal of medicine and medical sciences 30:319-321.
Onyszkiewicz M., Gawrys-Kopczynska M., Konopelski P., Aleksandrowicz M., Sawicka A., Koźniewska E., Samborowska E., Ufnal M. (2019) Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflügers Archiv-European Journal of Physiology 471:1441-1453.
Otto M. (2012) MRSA virulence and spread. Cellular microbiology 14:1513-1521. DOI: org/10.1111/j.1462-5822.2012.01832.x.
Pace B.S., White G.L., Dover G.J., Boosalis M.S., Faller D.V., Perrine S.P. (2002) Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood, The Journal of the American Society of Hematology 100:4640-4648.
Park S.K., Venable J.D., Xu T., Yates J.R. (2008) A quantitative analysis software tool for mass spectrometry–based proteomics. Nature methods 5:319-322.
Peebles E., Morris R., Chafe R. (2014) Community-associated methicillin-resistant Staphylococcus aureus in a pediatric emergency department in Newfoundland and Labrador. Canadian Journal of Infectious Diseases and Medical Microbiology 25.
Peres A.G., Madrenas J. (2013) The broad landscape of immune interactions with Staphylococcus aureus: from commensalism to lethal infections. Burns 39:380-388.
Poirier H., Rouault C., Clement L., Niot I., Monnot M.-C., Guerre-Millo M., Besnard P. (2005) Hyperinsulinaemia triggered by dietary conjugated linoleic acid is associated with a decrease in leptin and adiponectin plasma levels and pancreatic beta cell hyperplasia in the mouse. Diabetologia 48:1059-1065.
Rayner C., Munckhof W. (2005) Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Internal medicine journal 35.
Reynolds C., Quan V., Kim D., Peterson E., Dunn J., Whealon M., Terpstra L., Meyers H., Cheung M., Lee B. (2011) Methicillin-resistant Staphylococcus aureus (MRSA) carriage in 10 nursing homes in Orange County, California. Infection Control & Hospital Epidemiology 32:91-93.
Roberts L.D., Murray A.J., Menassa D., Ashmore T., Nicholls A.W., Griffin J.L. (2011) The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome biology 12:R75.
Romanski J., Karbarz M., Pyrzynska K., Jurczak J., Stojek Z. (2012) Polymeric hydrogels modified with ornithine and lysine: Sorption and release of metal cations and amino acids. Journal of Polymer Science Part A: Polymer Chemistry 50:542-550.
Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T.A., Mazmanian S.K. (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974-977.
Säbel C.E., Neureuther J.M., Siemann S. (2010) A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Analytical biochemistry 397:218-226.
Sarjeant K., Stephens K. (2012) Cold Spring Harbor Perspect. Biol 4:1485-1495.
Schwarz A., Bruhs A., Schwarz T. (2017) The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. Journal of Investigative Dermatology 137:855-864.
Shimazaki Y., Takani M., Yamauchi O. (2009) Metal complexes of amino acids and amino acid side chain groups. Structures and properties. Dalton Transactions:7854-7869. DOI: 10.1039/B905871K.
Shu M., Wang Y., Yu J., Kuo S., Coda A., Jiang Y., Gallo R.L., Huang C.-M. (2013) Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PloS one 8:e55380.
Sikder K., Shukla S.K., Patel N., Singh H., Rafiq K. (2018) High fat diet upregulates fatty acid oxidation and ketogenesis via intervention of PPAR-γ. Cellular Physiology and Biochemistry 48:1317-1331.
Soetaert W., Schwengers D., Buchholz K., Vandamme E. (1995) A wide range of carbohydrate modifications by a single micro-organism: leuconostoc mesenteroides, Progress in Biotechnology, Elsevier, Amsterdam, The Netherlands. pp. 351-358.
Sood A., Granick M.S., Tomaselli N.L. (2014) Wound dressings and comparative effectiveness data. Advances in wound care 3:511-529.
Stohs S.J., Bagchi D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free radical biology and medicine 18:321-336.
Talan D.A., Krishnadasan A., Gorwitz R.J., Fosheim G.E., Limbago B., Albrecht V., Moran G.J. (2011) Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. Clinical Infectious Diseases 53:144-149. DOI: org/10.1093/cid/cir308.
Tilg H., Kaser A. (2011) Gut microbiome, obesity, and metabolic dysfunction. The Journal of clinical investigation 121:2126-2132.
Tong X., Yang F. (2014) Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 35:1807-1815.
Traisaeng S., Batsukh A., Chuang T.-H., Herr D.R., Huang Y.-F., Chimeddorj B., Huang C.-M. (2020) Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Scientific Reports 10:1-10.
Tremaroli V., Bäckhed F. (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242-249.
Ulven T. (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Frontiers in endocrinology 3:111.
Ushijima T., Takahashi M., Ozaki Y. (1984) Acetic, propionic, and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulase-negative Staphylococcus on normal human skin. Canadian journal of microbiology 30:647-652.
Von Eiff C., Becker K., Machka K., Stammer H., Peters G. (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. New England Journal of Medicine 344:11-16.
Voss A., Doebbeling B.N. (1995) The worldwide prevalence of methicillin-resistant Staphylococcus aureus. International journal of antimicrobial agents 5:101-106.
Wang Y., Dai A., Huang S., Kuo S., Shu M., Tapia C., Yu J., Two A., Zhang H., Gallo R. (2014a) Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Beneficial microbes 5:161-168.
Wang Y., Kuo S., Shu M., Yu J., Huang S., Dai A., Gallo R.L., Huang C.-M. (2014b) Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology 98:411-424.
White U.A., Fitch M.D., Beyl R.A., Hellerstein M.K., Ravussin E. (2016) Differences in in vivo cellular kinetics in abdominal and femoral subcutaneous adipose tissue in women. Diabetes 65:1642-1647.
Wiśniewski J.R., Rakus D. (2014) Quantitative analysis of the Escherichia coli proteome. Data in brief 1:7-11.
Xu C., Hu X., Wang J., Zhang Y.-M., Liu X.-J., Xie B.-B., Yao C., Li Y., Li X.-S. (2015) Library of antifouling surfaces derived from natural amino acids by click reaction. ACS applied materials & interfaces 7:17337-17345.
Yadav H., Lee J.-H., Lloyd J., Walter P., Rane S.G. (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of biological chemistry 288:25088-25097.
Yang J.-J., Chang T.-W., Jiang Y., Kao H.-J., Chiou B.-H., Kao M.-S., Huang C.-M. (2018) Commensal Staphylococcus aureus provokes immunity to protect against skin infection of methicillin-resistant Staphylococcus aureus. International journal of molecular sciences 19:1290.
Yin H., Akasaki T., Sun T.L., Nakajima T., Kurokawa T., Nonoyama T., Taira T., Saruwatari Y., Gong J.P. (2013) Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. Journal of Materials Chemistry B 1:3685-3693.
Zhi X., Li P., Gan X., Zhang W., Shen T., Yuan J., Shen J. (2014) Hemocompatibility and anti-biofouling property improvement of poly (ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. Journal of Biomaterials Science, Polymer Edition 25:1619-1628.
指導教授 黃俊銘 莊宗顯 審核日期 2020-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明