參考文獻 |
1. Li S, Eguchi N, Lau H, Ichii H. The Role of the Nrf2 Signaling in Obesity and Insulin Resistance. International Journal of Molecular Sciences 21: 6973, 2020.
2. Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacological Reviews 68: 357–418, 2016.
3. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacological Reviews 46: 325–415, 1994.
4. Rössner S. Obesity: the disease of the twenty-first century. International Journal of Obesity 26: S2–S4, 2002.
5. Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Canadian Journal of Physiology and Pharmacology 86: 485–498, 2008.
6. Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nature Reviews Cancer 3: 110–116, 2003.
7. 59. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.
8. Kedzierski RM, Yanagisawa M. ENDOTHELINSYSTEM: The Double-Edged Sword in Health and Disease. Annual Review of Pharmacology and Toxicology 41: 851–876, 2001.
9. Ortmann J, Nett PC, Celeiro J, Traupe T, Tornillo L, Hofmann-Lehmann R, Haas E, Frank B, Terraciano LM, Barton M. Endothelin inhibition delays onset of hyperglycemia and associated vascular injury in type I diabetes: Evidence for endothelin release by pancreatic islet β-cells. Biochemical and Biophysical Research Communications 334: 689–695, 2005.
10. Kawanabe Y, Nauli SM. Endothelin. Cellular and molecular life sciences : CMLS 68: 195–203, 2011.
11. Usui I, Imamura T, Babendure JL, Satoh H, Lu J-C, Hupfeld CJ, Olefsky JM. G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Galphaq/11 and insulin receptor substrate-1 pathways in 3T3-L1 adipocytes. Molecular Endocrinology (Baltimore, Md) 19: 2760–2768, 2005.
12. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732, 1990.
13. Molenaar P, O’Reilly G, Sharkey A, Kuc RE, Harding DP, Plumpton C, Gresham GA, Davenport AP. Characterization and localization of endothelin receptor subtypes in the human atrioventricular conducting system and myocardium. Circulation Research 72: 526–538, 1993.
14. Idris I, Patiag D, Gray S, Donnelly R. Tissue- and time-dependent effects of endothelin-1 on insulin-stimulated glucose uptake. Biochemical Pharmacology 62: 1705–1708, 2001.
15. Barnes K, Turner AJ. The endothelin system and endothelin-converting enzyme in the brain: molecular and cellular studies. Neurochemical Research 22: 1033–1040, 1997.
16. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348: 732–735, 1990.
17. Seo B, Oemar BS, Siebenmann R, von Segesser L, Lüscher TF. Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation 89: 1203–1208, 1994.
18. Wu-Wong JR, Berg CE, Wang J, Chiou WJ, Fissel B. Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3-L1 adipocytes. The Journal of Biological Chemistry 274: 8103–8110, 1999.
19. Lee YC, Juan CC, Fang VS, Hsu YP, Lin S-H, Kwok CF, Ho LT. Evidence that endothelin-1 (ET-1) inhibits insulin-stimulated glucose uptake in rat adipocytes mainly through ETa receptors. Metabolism 47: 1468–1471, 1998.
20. Tanahashi T, Yamaguchi K, Ishikawa S, Kusuhara M, Adachi I, Abe O. Endothelin-1 inhibits adipogenic differentiation of 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications 177: 854–860, 1991.
21. Rusznyák S, Szent-Györgyi A. Vitamin P: Flavonols as Vitamins. Nature 138: 27–27, 1936.
22. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH. Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. American Journal of Physiology Cell Physiology 288: C1094–1108, 2005.
23. Kao YH, Chang HH, Lee MJ, Chen CL. Tea, obesity, and diabetes. Molecular Nutrition & Food Research 50: 188–210, 2006.
24. 28. Ku HC, Tsuei YW, Kao CC, Weng JT, Shih LJ, Chang HH, Liu CW, Tsai SW, Kuo YC, Kao YH. Green tea (-)-epigallocatechin gallate suppresses IGF-I and IGF-II stimulation of 3T3-L1 adipocyte glucose uptake via the glucose transporter 4, but not glucose transporter 1 pathway. General and Comparative Endocrinology 199: 46–55, 2014.
25. Kao YH, Hiipakka RA, Liao S. Modulation of obesity by a green tea catechin. The American Journal of Clinical Nutrition 72: 1232–1234, 2000.
26. Liao S, Kao YH, Hiipakka RA. Green tea: biochemical and biological basis for health benefits. Vitamins and Hormones 62: 1–94, 2001
27. Lin JK, Lin-Shiau SY. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Molecular Nutrition & Food Research 50: 211–217, 2006.
28. Liu HS, Chen YH, Hung PF, Kao YH. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. American Journal of Physiology Endocrinology and Metabolism 290: E273–281, 2006.
29. Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: From bedside to bench. Molecular Nutrition & Food Research 50: 176–187, 2006.
30. Wu BT, Hung PF, Chen HC, Huang RN, Chang HH, Kao YH. The apoptotic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway. Journal of Agricultural and Food Chemistry 53: 5695–5701, 2005.
31. 33. Lin JK, Liang YC, Lin-Shiau SY. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology 58: 911–915, 1999.
32. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. The American journal of clinical nutrition 70: 1040–5, 1999.
33. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH. Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. American Journal of Physiology Cell Physiology 297: C121–132, 2009.
34. Ku HC, Liu HS, Hung PF, Chen C-L, Liu HC, Chang HH, Tsuei YW, Shih LJ, Lin CL, Lin CM, Kao YH. Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Molecular nutrition & food research 56: 580–92, 2012.
35. Kao CC, Wu BT, Tsuei YW, Shih LJ, Kuo YL, Kao YH. Green tea catechins: inhibitors of glycerol-3-phosphate dehydrogenase. Planta Medica 76: 694–696, 2010.
36. Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Molecular Nutrition & Food Research 53: 349–360, 2009.
37. Rajpathak SN, Gunter MJ, Wylie-Rosett J, Ho GYF, Kaplan RC, Muzumdar R, Rohan TE, Strickler HD. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes/metabolism research and reviews 25: 3–12, 2009.
38. Kim MS, Lee DY. Insulin-like growth factor (IGF)-I and IGF binding proteins axis in diabetes mellitus. Annals of Pediatric Endocrinology & Metabolism 20: 69, 2015.
39. Froesch ER, Zapf J. Insulin-like growth factors and insulin: comparative aspects. Diabetologia 28: 485–493, 1985.
40. Baxter RC. The insulin-like growth factors and their binding proteins. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 91: 229–235, 1988.
41. LeRoith D, Werner H, Burguera B, Roberts Ct, Mulroney S, Haramati A. The insulin-like growth factor family of peptides, binding proteins and receptors: their potential role in tissue regeneration. Advances in experimental medicine and biology: 321:21-8, 1992.
42. De B, Ca G, Eo L, G J. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nature reviews. Endocrinology 9:346-56, 2013.
43. Wilcox G. Insulin and insulin resistance. The Clinical biochemist Reviews 26: 19–39, 2005.
44. Laron Z, Werner H. Insulin: A Growth Hormone and Potential Oncogene. Pediatric endocrinology reviews: PER 17: 191–197, 2020.
45. Thevis M, Thomas A, Schänzer W. Insulin. Handbook of Experimental Pharmacology 195:209-26, 2010
46. DeLoach S, Huan Y, Daskalakis C, Falkner B. Endothelin-1 response to glucose and insulin among african americans. Journal of the American Society of Hypertension : JASH 4: 227, 2010.
47. Ferri C , Pittoni V, Piccoli A, Laurenti O , Cassone Mr , Bellini C , Properzi G, Valesini G, De Mattia G, Santucci A. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. The Journal of clinical endocrinology and metabolism: 1995.
48. Sarafidis PA, Bakris GL. Insulin and Endothelin: An Interplay Contributing to Hypertension Development? The Journal of Clinical Endocrinology & Metabolism 92: 379–385, 2006.
49. Niswender KD. Basal Insulin: Physiology, Pharmacology, and Clinical Implications. Postgraduate Medicine 123: 17–26, 2011.
50. Kahn BB, Flier JS. Obesity and insulin resistance. Journal of Clinical Investigation 106: 473–481, 2000.
51. Boucher J, Softic S, El Ouaamari A, Krumpoch MT, Kleinridders A, Kulkarni RN, O’Neill BT, Kahn CR. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function. Diabetes 65: 2201–13, 2016.
52. Nagai M, Kamide K, Rakugi H, Takiuchi S, Imai M, Kida I, Matsukawa N, Higaki J, Ogihara T. Role of endothelin-1 induced by insulin in the regulation of vascular cell growth. American Journal of Hypertension 16: 223–228, 2003.
53. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. Journal of molecular endocrinology 47: R1-10, 2011.
54. Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Molecular endocrinology (Baltimore, Md.)19:1-11, 2005.
55. Massoner P, Ladurner-Rennau M, Eder IE, Klocker H. Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer. British Journal of Cancer 103: 1479–1484, 2010.
56. Ha WT, Jeong HY, Lee SY, Song H. Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development. Development & Reproduction 20: 179, 2016.
57. Hasdai D, Holmes DR, Richardson DM, Izhar U, Lerman A. Insulin and IGF-I attenuate the coronary vasoconstrictor effects of endothelin-1 but not of sarafotoxin 6c. Cardiovascular Research 39: 644–650, 1998.
58. Andronico G, Mangano M, Ferrara L, Lamanna D, Mulé G, Cerasola G. In vivo relationship between insulin and endothelin role of insulin-resistance. Journal of Human Hypertension 11: 63–66, 1997.
59. Hu RM, Levin RE, Pedram A, Frank JLH. Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes 42:351-358, 1993.
60. Yuan J, Yin Z, Tao K, Wang G, Gao J. Function of insulin‑like growth factor 1 receptor in cancer resistance to chemotherapy. Oncology Letters 15:41-47, 2017 |