博碩士論文 106821607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.149.234.230
姓名 瑪希塔(Masita Imamsari)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
(Caenorhabditis elegans mitochondrial AlaRS recognizes a T-armless tRNAAla through a non-traditional mode)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins
★ Recognition of tRNA His isoacceptors by human HisRS isoforms★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P
★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii★ tRNA aminoacylation by a naturally occurring mini-AlaRS
★ Functional Repurposing of C-Ala Domains★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Aminoacyl-tRNA synthetases(aaRSs)是一群普遍存在的酵素,它們的主要功能是將特定胺基酸接到相對應的tRNA,例如alanyl-tRNA synthetase(AlaRS)會將Ala接到tRNAAla 。 AlaRS具有四個重要的結構區,來維持完整的功能,包括催化區、tRNA結合區、編輯區、C-Ala區。這四個結構區是高度保留的,並且提供了完整的tRNA胺醯化及編輯能力。有趣的是,秀麗隱桿線蟲的粒線體AlaRS(CeAlaRSm)缺少C-Ala區,且其對應的tRNAAla缺乏TΨC,即便如此,CeAlaRSm仍然能精確地辨認tRNAAla上的辨識元素G3:U70配對。然而,我們的實驗結果發現CeAlaRSm只能有效胺醯化微型tRNAAla (microhelix-Ala),卻無法有效胺醯化完整的tRNAAla,如果將線蟲細胞質AlaRS(CeAlaRSc)的C-Ala區與CeAlaRSm融合產生融合酶,這個融合酶在in vivo和in vitro的情形下皆能更有效地胺醯化tRNAAla。然而,從CeAlaRSc中移除C-Ala區後,其胺醯化功能將產生缺陷。另外,一般AlaRS的tRNA結合區都含有兩個高度保留的胺基酸Asn和Asp,這二個胺基酸主要用來辨識tRNAAla 中的辨識元素(identity element) G3:U70。然而 ,CeAlaRSm在相對應位置的胺基酸卻是Gly和Glu。若將Gly322或Glu420突變為Ala,將導致酵素的胺醯化活性降低(in vitro),以及失去提供酵母菌AlaRS剔除株存活所需的胺醯化能力(in vivo),這結果表示,雖然CeAlaRSm沒有高度保留的胺基酸Asn及Asp,Gly及Glu仍然參與tRNAAla的G3:U70辨認。我們的結果顯示,CeAlaRSm是一種非典型的AlaRS,可通過非傳統的模式來辨認缺乏TΨC的 tRNAAla。
摘要(英) Aminoacyl-tRNA synthetases (aaRSs) are a family of ubiquitously expressed enzymes, attaching a specific amino acid to its corresponding tRNA, such as alanyl-tRNA synthetase (AlaRS) attaching alanine to tRNAAla. AlaRS consists of four important domains to work properly, including catalytic domain, tRNA-binding domain, editing domain, and C-Ala domain. Those four domains are highly conserved and support the full function of tRNA alanylation. Interestingly, C. elegans mitochondrial AlaRS (CeAlaRSm) lacks C-Ala domain. Our results showed that CeAlaRSm retains its tRNA specificity, but poorly recognizes a full-length tRNAAla in vivo and in vitro. In addition, we showed that fusion of the C-Ala domain of C. elegans cytoplasmic AlaRS (CeAlaRSc) to CeAlaRSm results in a fusion enzyme that can more efficienty charge tRNAAla in vivo and in vitro. On the other hand, deletion of the C-Ala domain from CeAlaRSc yielded a truncated enzyme defective in aminoacylation. Unlike canonical AlaRSs, which contain two highly conserved amino acid residues, Asn and Asp for recognition of the canonical identity element G3:U70 in the tRNAAla. CeAlaRSm contains Gly and Glu which at the corresponding positions. Mutation of G322 to A or E420 to A led to an enzyme defective in aminoacylation in vitro and complementation in vivo. Our results suggest that CeAlaRSm is a non-canonical AlaRS that recognizes a T-armless tRNAAla through a non-traditional mode.
關鍵字(中) ★ AlaRS
★ tRNA胺醯化
★ C-Ala結構區
★ 辨識元素(identity element)
★ tRNAAla
關鍵字(英) ★ AlaRS
★ aminoacylation
★ C-Ala domain
★ identity element
★ tRNAAla
論文目次 ABSTRACT i
ABSTRACT (In Chinese) ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENT iv
CHAPTER I INTRODUCTION 1
I. Aminoacyl-tRNA Synthetases (aaRSs) are group of translation enzymes 1
II. Alanyl-tRNA Synthetase (AlaRS) is a class II aaRS 1
III. AlaRS identifies tRNAAla through G3:U70 2
IV. Non-canonical AlaRSs and tRNAsAla 3
V. C. elegans AlaRS and tRNAAla 4
CHAPTER II MATERIALS AND METHODS 6
I. Construction and purification of CeAlaRSm 6
II. Heterologous complementation assay 7
III. Western blotting 8
IV. Construction and in vitro transcription of tRNAsAla 8
V. Aminoacylation assay 9
CHAPTER III RESULTS 11
I. Rescue of yeast AlaRS knockout strain by CeAlaRSm 11
II. CeAlaRSm cannot efficiently charge SctRNAnAla and EctRNAAla in vitro 12
III. The C-Ala domain increases the aminoacylation activity of CeAlaRSm towards full-length tRNAAla 13
IV. Mutation of G322 or E420 to A impairs the aminoacylation activity of CeAlaRSm in vivo and in vitro 14
V. Overexpression of tRNAAla rescues the defective phenotype of CeAlaRSm mutants in vivo 15
CHAPTER IV DISCUSSIONS 17
I. CeAlaRSm poorly charges full-length tRNAAla due to lack of the C-Ala domain 17
II. CeAlaRSm lacks the highly conserved Asn and Asp for G3:U70 recognition 18
III. Phylogenetic analysis of CeAlaRSc and CeAlaRSm 19
REFERENCES 21
APPENDIX A 46
APPENDIX B 50
APPENDIX C 53
參考文獻 1. Swairjo, M., Otero, F., Yang, X.-L., Lovato, M., Skene, R., McRee, D., Pouplana, L. and Schimmel, P. (2004) Alanyl-tRNA Synthetase Crystal Structure and Design for Acceptor-Stem Recognition. Molecular cell, 13, 829-841.
2. Carter, C. (1993) Cognition, Mechanism, and Evolutionary Relationships in Aminoacyl-tRNA Synthetases. Annual review of biochemistry, 62, 715-748.
3. Woese, C., Olsen, G., Ibba, M. and Soll, D. (2000) Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiology and molecular biology reviews : MMBR, 64, 202-236.
4. Buechter, D. and Schimmel, P. (1993) Dissection of a class II tRNA synthetase: Determinants for minihelix recognition are tightly associated with domain for amino acid activation. Biochemistry, 32, 5267-5272.
5. Jasin, M., Regan, L. and Schimmel, P. (1983) Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature, 306, 441-447.
6. Beebe, K., Pouplana, L. and Schimmel, P. (2003) Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. The EMBO journal, 22, 668-675.
7. Naganuma, M., Sekine, S.-i., Fukunaga, R. and Yokoyama, S. (2009) Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proceedings of the National Academy of Sciences of the United States of America, 106, 8489-8494.
8. Sokabe, M., Ose, T., Nakamura, A., Tokunaga, K., Nureki, O., Yao, M. and Tanaka, I. (2009) The structure of alanyl-tRNA synthetase with editing domain. Proceedings of the National Academy of Sciences of the United States of America, 106, 11028-11033.
9. Beebe, K., Mock, M., Merriman, E. and Schimmel, P. (2008) Distinct domains of tRNA synthetase recognize the same base pair. Nature, 451, 90-93.
10. Sun, L., Song, Y., Blocquel, D., Yang, X.-L. and Schimmel, P. (2016) Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proceedings of the National Academy of Sciences, 113, 201617316.
11. Guo, M., Chong, Y., Beebe, K., Shapiro, R., Yang, X.-L. and Schimmel, P. (2009) The C-Ala Domain Brings Together Editing and Aminoacylation Functions on One tRNA. Science (New York, N.Y.), 325, 744-747.
12. Wang, X., Wang, Q., Tang, H., Chen, B., Dong, X., Niu, S., Li, S., Shi, Y., Shan, W. and Zaiqiang, Z. (2019) Novel Alanyl-tRNA Synthetase 2 Pathogenic Variants in Leukodystrophies. Frontiers in Neurology, 10, 1321.
13. Kuo, M., Antonellis, A. and Shakkottai, V. (2019) Alanyl-tRNA Synthetase 2 (AARS2)-Related Ataxia Without Leukoencephalopathy. The Cerebellum, 19.
14. Sommerville, E., Zhou, X.-L., Oláhová, M., Jenkins, J., Euro, L., Konovalova, S., Hilander, T., Pyle, A., He, L., Habeebu, S.S. et al. (2018) Instability of the mitochondrial alanyl-tRNA synthetase underlies fatal infantile-onset cardiomyopathy. Human molecular genetics, 28.
15. Chang, C.-P., Tseng, Y.-K., Ko, C.-Y. and Wang, C.-C. (2011) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic acids research, 40, 314-322.
16. McClain, W. and Foss, K. (1988) Changing the Identity of a tRNA by Introducing a GU Wobble Pair near the 3′ Acceptor End. Science (New York, N.Y.), 240, 793-796.
17. Musier-Forsyth, K., Usman, N., Scaringe, S., Doudna, J., Green, R. and Schimmel, P. (1991) Specificity for Aminoacylation of an RNA Helix: An Unpaired, Exocyclic Amino Group in the Minor Groove. Science (New York, N.Y.), 253, 784-786.
18. Beuning, P., Gulotta, M. and Musier-Forsyth, K. (1997) Atomic Group “Mutagenesis” Reveals Major Groove Fine Interactions of a tRNA Synthetase with an RNA Helix. Journal of The American Chemical Society - J AM CHEM SOC, 119.
19. Chong, Y., Guo, M., Yang, X.-L., Kuhle, B., Naganuma, M., Sekine, S.-i., Yokoyama, S. and Schimmel, P. (2018) Distinct ways of G:U recognition by conserved tRNA binding motifs. Proceedings of the National Academy of Sciences, 115, 201807109.
20. Kuhle, B., Chihade, J. and Schimmel, P. (2020) Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nature Communications, 11.
21. Lovato, M., Swairjo, M. and Schimmel, P. (2004) Positional Recognition of a tRNA Determinant Dependent on a Peptide Insertion. Molecular cell, 13, 843-851.
22. Chihade, J., Hayashibara, K., Shiba, K. and Schimmel, P. (1998) Strong Selective Pressure To Use G:U To Mark an RNA Acceptor Stem for Alanine †. Biochemistry, 37, 9193-9202.
23. Watanabe, Y.-I., Suematsu, T. and Ohtsuki, T. (2014) Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Frontiers in genetics, 5, 109.
24. Lovato, M., Chihade, J. and Schimmel, P. (2001) Translocation within the acceptor helix of a major tRNA identity determinant. The EMBO journal, 20, 4846-4853.
25. Okimoto, R., Macfarlane, J., Clary, D. and Wolstenholme, D. (1992) The Mitochondrial Genomes of Two Nematodes, Caenorhabditis Elegans and Ascaris Suum. Genetics, 130, 471-498.
26. Sakurai, M., Ohtsuki, T. and Watanabe, K. (2005) Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic acids research, 33, 1653-1661.
27. Chang, K.-J. and Wang, C.-C. (2004) Translation Initiation from A Naturally Occurring Non-AUG Codon in Saccharomyces cerevisiae. The Journal of biological chemistry, 279, 13778-13785.
28. Lee, Y.-H., Lo, Y.-T., Chang, C.-P., Yeh, C.-S., Chang, T.-H., Chen, Y.-W., Tseng, Y.-K. and Wang, C.-C. (2019) Naturally occurring dual recognition of tRNAHis substrates with and without a universal identity element. RNA Biol, 16, 1275-1285.
29. Schimmel, P., Giegé, R., Moras, D. and Yokoyama, S. (1993) An operational RNA code for amino acids and possible relation to genetic code. Proceedings of the National Academy of Sciences of the United States of America, 90, 8763-8768.
30. Hou, Y.-M. and Schimmel, P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 140-145.
31. McClain, W. and Foss, K. (1988) McClain, W. H. & Foss, K. Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket". Science 241, 1804-1807. Science (New York, N.Y.), 241, 1804-1807.
32. Zeng, Q.-Y., Peng, G.X., Li, G., Zhou, J.-B., Zheng, W.-Q., Xue, M.-Q., Wang, E.-D. and Zhou, X.-L. (2019) The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase. Nucleic Acids Research, 47, 3072-3085.
33. Bullard, J., Cai, Y.-C., Demeler, B. and Spremulli, L. (1999) Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase. Journal of molecular biology, 288, 567-577.
34. Bullard, J., Cai, Y.-C. and Spremulli, L. (2000) Expression and characterization of the human mitochondrial leucyl-tRNA synthetase. Biochimica et biophysica acta, 1490, 245-258.
35. Arutaki, M., Kurihara, R., Matsuoka, T., Inami, A., Tokunaga, K., Ohno, T., Takahashi, H., Takano, H., Ando, T., Mutsuro-Aoki, H. et al. (2020) G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases. Journal of Molecular Evolution, 88.
36. Brown, J. and Doolittle, W. (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiology and molecular biology reviews : MMBR, 61, 456-502.
37. Chihade, J., Brown, J., Schimmel, P. and Pouplana, L. (2000) Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. Proceedings of the National Academy of Sciences of the United States of America, 97, 12153-12157.
38. Frazer-Abel, A. and Hagerman, P. (2008) Core flexibility of a truncated metazoan mitochondrial tRNA. Nucleic acids research, 36, 5472-5481.
39. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution, 35.
40. Thompson, J., Higgins, D.G. and Gibson, I.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 1673-1680.
41. Whelan, S. and Goldman, N. (2001) A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum Likelihood Approach. Molecular biology and evolution, 18, 691-699.
指導教授 王健家(Chien-Chia Wang) 審核日期 2020-12-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明