參考文獻 |
[1] P.S.Adusumilli, L.Ben-Porat, M.Pereira, D.Roesler, I.M.Leitman, The prevalence and predictors of herbal medicine use in surgical patients, J. Am. Coll. Surg. 198 (2004) 583–590. doi:10.1016/j.jamcollsurg.2003.11.019.
[2] S.Á.Soós, N.Jeszenõi, K.Darvas, L.Harsányi, Complementary and alternative medicine use in surgical patients, Orv. Hetil. 157 (2016) 1483–1488. doi:10.1556/650.2016.30543.
[3] L.L.Everett, P.K.Birmingham, G.D.Williams, B.R.Brenn, J.H.Shapiro, Herbal and homeopathic medication use in pediatric surgical patients, Paediatr. Anaesth. 15 (2005) 455–460. doi:10.1111/j.1460-9592.2005.01487.x.
[4] J.Pretty, J.Barton, Nature-based interventions and mind–body interventions: Saving public health costs whilst increasing life satisfaction and happiness, Int. J. Environ. Res. Public Health. 17 (2020) 1–23. doi:10.3390/ijerph17217769.
[5] M.Minen, S.Jinich, G.Vallespir Ellett, Behavioral Therapies and Mind-Body Interventions for Posttraumatic Headache and Post-Concussive Symptoms: A Systematic Review, Headache. 59 (2019) 151–163. doi:10.1111/head.13455.
[6] I.Buric, M.Farias, J.Jong, C.Mee, I.A.Brazil, What is the molecular signature of mind-body interventions? A systematic review of gene expression changes induced by meditation and related practices, Front. Immunol. 8 (2017). doi:10.3389/fimmu.2017.00670.
[7] C.Fulwiler, J.A.Brewer, S.Sinnott, E.B.Loucks, Mindfulness-Based Interventions for Weight Loss and CVD Risk Management, Curr. Cardiovasc. Risk Rep. 9 (2015). doi:10.1007/s12170-015-0474-1.
[8] D.S.Black, G.M.Slavich, Mindfulness meditation and the immune system: a systematic review of randomized controlled trials, Ann. N. Y. Acad. Sci. 1373 (2016) 13–24. doi:10.1111/nyas.12998.
[9] R.Chaix, M.Fagny, M.Cosin-Tomás, M.Alvarez-López, L.Lemee, B.Regnault, R.J.Davidson, A.Lutz, P.Kaliman, Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways, Brain. Behav. Immun. 84 (2020) 36–44. doi:10.1016/j.bbi.2019.11.003.
[10] S.Gautam, M.Tolahunase, U.Kumar, R.Dada, Impact of yoga based mind-body intervention on systemic inflammatory markers and co-morbid depression in active Rheumatoid arthritis patients: A randomized controlled trial, Restor. Neurol. Neurosci. 37 (2019) 41–59. doi:10.3233/RNN-180875.
[11] D.I.Galper, A.G.Taylor, D.J.Cox, Current status of mind-body interventions for vascular complications of diabetes, Fam. Community Heal. 26 (2003) 34–40. doi:10.1097/00003727-200301000-00005.
[12] E.H.Kozasa, H.Hachul, C.Monson, L.Pinto, M.C.Garcia, L.E.D.A.M.Mello, S.Tufik, Mind-body interventions for the treatment of insomnia: A review, Rev. Bras. Psiquiatr. 32 (2010) 437–443. doi:10.1590/S1516-44462010000400018.
[13] S.Wemmert, R.Ketter, J.Rahnenführer, N.Beerenwinkel, M.Strowitzki, W.Feiden, C.Hartmann, T.Lengauer, F.Stockhammer, K.D.Zang, E.Meese, W.I.Steudel, A.VonDeimling, S.Urbschat, Patients with high-grade gliomas harboring deletions of chromosomes 9p and 10q benefit from temozolomide treatment, Neoplasia. 7 (2005) 883–893. doi:10.1593/neo.05307.
[14] H.Gaitzsch, J.Benard, J.Hugon-Rodin, L.Benzakour, I.Streuli, The effect of mind-body interventions on psychological and pregnancy outcomes in infertile women: a systematic review, Arch. Womens. Ment. Health. 23 (2020) 479–491. doi:10.1007/s00737-019-01009-8.
[15] S.Y.Tsai, Effect of yoga exercise on premenstrual symptoms among female employees in Taiwan, Int. J. Environ. Res. Public Health. 13 (2016). doi:10.3390/ijerph13070721.
[16] E.Stefanopoulou, E.A.Grunfeld, Mind–body interventions for vasomotor symptoms in healthy menopausal women and breast cancer survivors. A systematic review, J. Psychosom. Obstet. Gynecol. 38 (2017) 210–225. doi:10.1080/0167482X.2016.1235147.
[17] S.E.Appling, S.Scarvalone, R.MacDonald, M.McBeth, K.J.Helzlsouer, Fatigue in breast cancer survivors: The impact of a mind-body medicine intervention, Oncol. Nurs. Forum. 39 (2012) 278–286. doi:10.1188/12.ONF.278-286.
[18] B.I.Rice, Mind-Body Interventions, (n.d.) 213–217.
[19] B.Hommel, L.S.Colzato, Meditation and Metacontrol, J. Cogn. Enhanc. 1 (2017) 115–121. doi:10.1007/s41465-017-0017-4.
[20] A.Moore, P.Malinowski, Meditation, mindfulness and cognitive flexibility, Conscious. Cogn. 18 (2009) 176–186. doi:10.1016/j.concog.2008.12.008.
[21] B.R.Cahn, J.Polich, Meditation states and traits: EEG, ERP, and neuroimaging studies, Psychol. Bull. 132 (2006) 180–211. doi:10.1037/0033-2909.132.2.180.
[22] A.M.Househam, C.T.Peterson, P.J.Mills, D.Chopra, The Effects of Stress and Meditation on the Immune System, Human Microbiota, and Epigenetics, Adv. Mind. Body. Med. 31 (2017) 10–25.
[23] M.C.Pascoe, D.R.Thompson, C.F.Ski, Meditation and Endocrine Health and Wellbeing, Trends Endocrinol. Metab. 31 (2020) 469–477. doi:10.1016/j.tem.2020.01.012.
[24] Y.Y.Tang, B.K.Hölzel, M.I.Posner, The neuroscience of mindfulness meditation, Nat. Rev. Neurosci. 16 (2015) 213–225. doi:10.1038/nrn3916.
[25] A.DosSantos-Silva, M.N.Bubols, I.D.L.Argimon, O.Stagnaro, L.O.Alminhana, Benefits of relaxation techniques in the elderly: a systematic review, Psico. 51 (2020) 28367. doi:10.15448/1980-8623.2020.1.28367.
[26] J.E.Peterson, Industrial health, Appl. Occup. Environ. Hyg. 6 (1991) 653–654. doi:10.1080/1047322X.1991.10387955.
[27] D.Effects, O.F.Relaxation, Outcome 957, Search. (1986).
[28] V.Perciavalle, M.Blandini, P.Fecarotta, A.Buscemi, D.DiCorrado, L.Bertolo, F.Fichera, M.Coco, The role of deep breathing on stress, Neurol. Sci. 38 (2017) 451–458. doi:10.1007/s10072-016-2790-8.
[29] S.Cicek, F.Basar, The effects of breathing techniques training on the duration of labor and anxiety levels of pregnant women, Complement. Ther. Clin. Pract. 29 (2017) 213–219. doi:10.1016/j.ctcp.2017.10.006.
[30] H.Y.Chan, Y.T.Dai, I.C.Hou, Evaluation of a tablet-based instruction of breathing technique in patients with COPD, Int. J. Med. Inform. 94 (2016) 263–270. doi:10.1016/j.ijmedinf.2016.06.018.
[31] P.Sharma, M.Mavai, O.L.Bhagat, M.Murugesh, S.Sircar, Slow deep breathing increases pain-tolerance and modulates cardiac autonomic nervous system, Indian J. Physiol. Pharmacol. 61 (2017) 107–113.
[32] R.P.Brown, P.L.Gerbarg, F.Muench, Breathing Practices for Treatment of Psychiatric and Stress-Related Medical Conditions, Psychiatr. Clin. North Am. 36 (2013) 121–140. doi:10.1016/j.psc.2013.01.001.
[33] C.Lan, J.S.Lai, S.Y.Chen, Tai chi chuan: An ancient wisdom on exercise and health promotion, Sport. Med. 32 (2002) 217–224. doi:10.2165/00007256-200232040-00001.
[34] D.E.Lewis, T’ai chi ch’uan, Complement. Ther. Nurs. Midwifery. 6 (2000) 204–206. doi:10.1054/ctnm.2000.0490.
[35] E.W.Thornton, K.S.Sykes, W.K.Tang, Health benefits of Tai Chi exercise: Improved balance and blood pressure in middle-aged women, Health Promot. Int. 19 (2004) 33–38. doi:10.1093/heapro/dah105.
[36] R.E.Taylor-Piliae, E.S.Froelicher, The effectiveness of tai chi exercise in improving aerobic capacity: A meta‐analysis, J. Cardiovasc. Nurs. 19 (2004) 48–57. doi:10.1097/00005082-200401000-00009.
[37] S.J.Winser, W.W.N.Tsang, K.Krishnamurthy, P.Kannan, Does Tai Chi improve balance and reduce falls incidence in neurological disorders? A systematic review and meta-analysis, Clin. Rehabil. 32 (2018) 1157–1168. doi:10.1177/0269215518773442.
[38] C.Lan, S.Y.Chen, M.K.Wong, J.S.Lai, Tai Chi Chuan exercise for patients with cardiovascular disease, Evidence-Based Complement. Altern. Med. 2013 (2013). doi:10.1155/2013/983208.
[39] R.B.Wall, Tai Chi and mindfulness-based stress reduction in a Boston Public Middle School, J. Pediatr. Heal. Care. 19 (2005) 230–237. doi:10.1016/j.pedhc.2005.02.006.
[40] B.Oh, K.Bae, G.Lamoury, T.Eade, F.Boyle, B.Corless, S.Clarke, A.Yeung, D.Rosenthal, L.Schapira, M.Back, The Effects of Tai Chi and Qigong on Immune Responses: A Systematic Review and Meta-Analysis, Medicines. 7 (2020) 39. doi:10.3390/medicines7070039.
[41] L.Qin, S.Au, W.Choy, P.Leung, M.Neff, K.Lee, M.Lau, J.Woo, K.Chan, Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: A case-control study, Arch. Phys. Med. Rehabil. 83 (2002) 1355–1359. doi:10.1053/apmr.2002.35098.
[42] L.C., C.S.-Y., L.J.-S., W.A.M.-K., Tai Chi Chuan in medicine and health promotion, Evidence-Based Complement. Altern. Med. 2013 (2013). http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L369994890%5Cnhttp://dx.doi.org/10.1155/2013/502131%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=1741427X&id=doi:10.1155/2013/502131&atitle=Tai+Chi+Chuan+in+medicine+and+healt.
[43] B.C.Salgado, M.Jones, S.Ilgun, G.McCord, M.Loper-Powers, P.vanHouten, Effects of a 4-month Ananda Yoga program on physical and mental health outcomes for persons with multiple sclerosis., Int. J. Yoga Therap. 23 (2013) 27–38. doi:10.17761/ijyt.23.2.201k61q276486622.
[44] F.Hylander, M.Johansson, D.Daukantaitė, K.Ruggeri, Yin yoga and mindfulness: a five week randomized controlled study evaluating the effects of the YOMI program on stress and worry, Anxiety, Stress Coping. 30 (2017) 365–378. doi:10.1080/10615806.2017.1301189.
[45] H.Cramer, D.Quinker, K.Pilkington, H.Mason, J.Adams, G.Dobos, Associations of yoga practice, health status, and health behavior among yoga practitioners in Germany—Results of a national cross-sectional survey, Complement. Ther. Med. 42 (2019) 19–26. doi:10.1016/j.ctim.2018.10.026.
[46] Y.Mudra, Yoga Exercise Increases Chest Wall Expansion and, Thai J. Physiol. Sci. 19 (2006) 1–7. www.tjps.org.
[47] V.S.Cowen, T.B.Adams, Physical and perceptual benefits of yoga asana practice: Results of a pilot study, J. Bodyw. Mov. Ther. 9 (2005) 211–219. doi:10.1016/j.jbmt.2004.08.001.
[48] I.Stephens, Medical Yoga Therapy, Children. 4 (2017) 12. doi:10.3390/children4020012.
[49] S.L.Kolasinski, M.Garfinkel, A.G.Tsai, W.Matz, A.VanDyke, H.R.Schumacher, Iyengar yoga for treating symptoms of osteoarthritis of the knees: A pilot study, J. Altern. Complement. Med. 11 (2005) 689–693. doi:10.1089/acm.2005.11.689.
[50] W.T.Cade, D.N.Reeds, K.E.Mondy, E.T.Overton, J.Grassino, S.Tucker, C.Bopp, E.Laciny, S.Hubert, S.Lassa-Claxton, K.E.Yarasheski, Yoga lifestyle intervention reduces blood pressure in HIV-infected adults with cardiovascular disease risk factors, HIV Med. 11 (2010) 379–388. doi:10.1111/j.1468-1293.2009.00801.x.
[51] M.C.Pascoe, I.E.Bauer, A systematic review of randomised control trials on the effects of yoga on stress measures and mood, J. Psychiatr. Res. 68 (2015) 270–282. doi:10.1016/j.jpsychires.2015.07.013.
[52] N.Goldman, M.Weinstein, J.Cornman, B.Singer, T.Seeman, M.C.Chang, Sex differentials in biological risk factors for chronic disease: Estimates from population-based surveys, J. Women’s Heal. 13 (2004) 393–403. doi:10.1089/154099904323087088.
[53] S.Narayanan, R.Francisco, G.Lopez, M.A.Chaoul, S.Meegada, W.Liu, S.Mallaiah, K.Milbury, L.Cohen, Role of yoga across the cancer care continuum: From diagnosis through survivorship, J. Clin. Outcomes Manag. 26 (2019) 219–228.
[54] M.El-Sheikh, S.A.Erath, J.A.Buckhalt, D.A.Granger, J.Mize, Cortisol and children’s adjustment: The moderating role of sympathetic nervous system activity, J. Abnorm. Child Psychol. 36 (2008) 601–611. doi:10.1007/s10802-007-9204-6.
[55] K.Y.Weight, L.Program, T.D.Braun, C.L.Park, L.A.Conboy, Weight Loss Among Participants in a Residential , Int. J. Yoga Therap. 22 (2012). http://eds.b.ebscohost.com.ezproxy.endeavour.edu.au/eds/pdfviewer/pdfviewer?vid=29&sid=4b28d41c-cf55-4ee9-9161-3c0d60d6db26%40sessionmgr112&hid=108.
[56] M.Johansson, P.Hassmén, J.Jouper, Acute Effects of Qigong Exercise on Mood and Anxiety, Int. J. Stress Manag. 15 (2008) 199–207. doi:10.1037/1072-5245.15.2.199.
[57] Y.Zeng, X.Xie, A.S.K.Cheng, Qigong or Tai Chi in Cancer Care: an Updated Systematic Review and Meta-analysis, Curr. Oncol. Rep. 21 (2019) 4–9. doi:10.1007/s11912-019-0786-2.
[58] K.W.Chen, An analytic review of studies on measuring effects of external Qi in China, Altern. Ther. Health Med. 10 (2004) 38–50.
[59] K.M.Sancier, B.Hu, Medical applications of Qigong and emitted Qi on humans, animals, cell cultures, and plants: Review of selected scientific research, Am. J. Acupunct. 19 (1991) 367–377.
[60] H.S.Jang, M.S.Lee, Effects of qi therapy (external qigong) on premenstrual syndrome: A randomized placebo-controlled study, J. Altern. Complement. Med. 10 (2004) 456–462. doi:10.1089/1075553041323902.
[61] T.D.Thacher, L.Smith, P.R.Fischer, C.O.Isichei, S.S.Cha, J.M.Pettifor, Optimal Dose of Calcium for Treatment of Nutritional Rickets: A Randomized Controlled Trial, J. Bone Miner. Res. 31 (2016) 2024–2031. doi:10.1002/jbmr.2886.
[62] K.M.Sancier, Medical applications of qigong, Altern. Ther. Health Med. 2 (1996) 40–46.
[63] M.S.Lee, B.Oh, E.Ernst, Qigong for healthcare: an overview of systematic reviews, JRSM Short Rep. 2 (2011) 1–5. doi:10.1258/shorts.2010.010091.
[64] A.Zijlstra, M.Mancini, L.Chiari, W.Zijlstra, Biofeedback for training balance and mobility tasks in older populations: A systematic review, J. Neuroeng. Rehabil. 7 (2010) 1–15. doi:10.1186/1743-0003-7-58.
[65] P.L.A.Schoenberg, A.S.David, Biofeedback for psychiatric disorders: A systematic review, Appl. Psychophysiol. Biofeedback. 39 (2014) 109–135. doi:10.1007/s10484-014-9246-9.
[66] T.M.Sokhadze, R.L.Cannon, D.L.Trudeau, EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy, and recommendations for further research, Appl. Psychophysiol. Biofeedback. 33 (2008) 1–28. doi:10.1007/s10484-007-9047-5.
[67] J.A.Glombiewski, K.Bernardy, W.Häuser, Efficacy of EMG- and EEG-biofeedback in fibromyalgia syndrome: A meta-analysis and a systematic review of randomized controlled trials, Evidence-Based Complement. Altern. Med. 2013 (2013). doi:10.1155/2013/962741.
[68] J.M.Peake, G.Kerr, J.P.Sullivan, A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations, Front. Physiol. 9 (2018) 1–19. doi:10.3389/fphys.2018.00743.
[69] S.Burger, the Aging Process, Sciences (New. York). 3 (1963) 10–13. doi:10.1002/j.2326-1951.1963.tb00730.x.
[70] C.Kenyon, A conserved regulatory system for aging, Cell. 105 (2001) 165–168. doi:10.1016/S0092-8674(01)00306-3.
[71] R.Stefanatos, A.Sanz, Mitochondrial complex I: A central regulator of the aging process, Cell Cycle. 10 (2011) 1528–1532. doi:10.4161/cc.10.10.15496.
[72] A.A.Cohen, E.Milot, Q.Li, P.Bergeron, R.Poirier, F.Dusseault-Bélanger, T.Fülöp, M.Leroux, V.Legault, E.J.Metter, L.P.Fried, L.Ferrucci, Detection of a novel, integrative aging process suggests complex physiological integration, PLoS One. 10 (2015) 1–26. doi:10.1371/journal.pone.0116489.
[73] A.Salminen, K.Kaarniranta, ER stress and hormetic regulation of the aging process, Ageing Res. Rev. 9 (2010) 211–217. doi:10.1016/j.arr.2010.04.003.
[74] S.Hekimi, L.Guarente, Genetics and the specificity of the aging process, Science (80-. ). 299 (2003) 1351–1354. doi:10.1126/science.1082358.
[75] Experimental procedure, Scand. J. Gastroenterol. 22 (1987) 13. doi:10.3109/00365528709091684.
[76] M.L.Toth, I.Melentijevic, L.Shah, A.Bhatia, K.Lu, A.Talwar, H.Naji, C.Ibanez-Ventoso, P.Ghose, A.Jevince, J.Xue, L.A.Herndon, G.Bhanot, C.Rongo, D.H.Hal, M.Driscoll, Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system, J. Neurosci. 32 (2012) 8778–8790. doi:10.1523/JNEUROSCI.1494-11.2012.
[77] J.N.Meyer, W.A.Boyd, G.A.Azzam, A.C.Haugen, J.H.Freedman, B.VanHouten, Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans, Genome Biol. 8 (2007). doi:10.1186/gb-2007-8-5-r70.
[78] G.Aubert, P.M.Lansdorp, Telomeres and aging, Physiol. Rev. 88 (2008) 557–579. doi:10.1152/physrev.00026.2007.
[79] J.Campisi, S. hoKim, C.S.Lim, M.Rubio, Cellular senescence, cancer and aging: The telomere connection, Exp. Gerontol. 36 (2001) 1619–1637. doi:10.1016/S0531-5565(01)00160-7.
[80] K.Masutomi, S.Kaneko, N.Hayashi, T.Yamashita, Y.Shirota, K.Kobayashi, S.Murakami, Telomerase activity reconstituted in vitro with purified human telomerase reverse transcriptase and human telomerase RNA component, J. Biol. Chem. 275 (2000) 22568–22573. doi:10.1074/jbc.M000622200.
[81] L.M.Colgin, C.Wilkinson, A.Englezou, A.Kilian, M.O.Robinson, R.R.Reddel, The hTERTα splice variant is a dominant negative inhibitor of telomerase activity, Neoplasia. 2 (2000) 426–432. doi:10.1038/sj.neo.7900112.
[82] J.Karlseder, A.Smogorzewska, T.DeLange, Senescence induced by altered telomere state, not telomere loss, Science (80-. ). 295 (2002) 2446–2449. doi:10.1126/science.1069523.
[83] T.L.Jacobs, E.S.Epel, J.Lin, E.H.Blackburn, O.M.Wolkowitz, D.A.Bridwell, A.P.Zanesco, S.R.Aichele, B.K.Sahdra, K.A.MacLean, B.G.King, P.R.Shaver, E.L.Rosenberg, E.Ferrer, B.A.Wallace, C.D.Saron, Intensive meditation training, immune cell telomerase activity, and psychological mediators, Psychoneuroendocrinology. 36 (2011) 664–681. doi:10.1016/j.psyneuen.2010.09.010.
[84] C.Mason, R.A.Risques, L.Xiao, C.R.Duggan, I.Imayama, K.L.Campbell, A.Kong, K.E.Foster-Schubert, C.Y.Wang, C.M.Alfano, G.L.Blackburn, P.S.Rabinovitch, A.McTiernan, Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women, Obesity. 21 (2013) 549–554. doi:10.1002/oby.20509.
[85] E.Puterman, J.Lin, E.Blackburn, A.O’Donovan, N.Adler, E.Epel, The power of exercise: Buffering the effect of chronic stress on telomere length, PLoS One. 5 (2010) 1–6. doi:10.1371/journal.pone.0010837.
[86] W.Chilton, B.O’Brien, F.Charchar, Telomeres, aging and exercise: Guilty by association?, Int. J. Mol. Sci. 18 (2017). doi:10.3390/ijms18122573.
[87] T.Esch, R.M.Kream, G.B.Stefano, Chromosomal Processes in Mind-Body Medicine: Chronic Stress, Cell Aging, and Telomere Length, Med. Sci. Monit. Basic Res. 24 (2018) 134–140. doi:10.12659/MSMBR.911786.
[88] J.E.Verhoeven, B.W.Penninx, V.I.Reus, R.Rosser, C.M.Hough, L.Mahan, H.M.Burke, E.H.Blackburn, O.M.Wolkowitz, HHS Public Access, (2018) 177–180. doi:10.1016/j.jpsychores.2017.06.009.Telomere.
[89] M.J.Kiel, S.J.Morrison, Maintaining Hematopoietic Stem Cells in the Vascular Niche, Immunity. 25 (2006) 862–864. doi:10.1016/j.immuni.2006.11.005.
[90] D.Bryder, D.J.Rossi, I.L.Weissman, Hematopoietic stem cells: The paradigmatic tissue-specific stem cell, Am. J. Pathol. 169 (2006) 338–346. doi:10.2353/ajpath.2006.060312.
[91] R.G.Shaffer, S.Greene, A.Arshi, G.Supple, A.Bantly, J.S.Moore, M.S.Parmacek, E.R.Mohler, Effect of acute exercise on endothelial progenitor cells in patients with peripheral arterial disease, Vasc. Med. 11 (2006) 219–226. doi:10.1177/1358863x06072213.
[92] T.Yin, L.Li, The stem cell niches in bone, J. Clin. Invest. 116 (2006) 1195–1201. doi:10.1172/JCI28568.
[93] J.E.Noll, S.A.Williams, L.E.Purton, A.C.W.Zannettino, Tug of war in the haematopoietic stem cell niche: Do myeloma plasma cells compete for the HSC niche?, Blood Cancer J. 2 (2012). doi:10.1038/bcj.2012.38.
[94] K.Inoue, S.Noda, N.Ogonuki, H.Miki, S.Inoue, K.Katayama, K.Mekada, H.Miyoshi, A.Ogura, Differential Developmental Ability of Embryos Cloned from Tissue-Specific Stem Cells, Stem Cells. 25 (2007) 1279–1285. doi:10.1634/stemcells.2006-0747.
[95] P.G.Robey, P.Bianco, Stem Cells in Tissue Engineering, Handb. Stem Cells. 2 (2013) 965–972. doi:10.1016/B978-0-12-385942-6.00079-2.
[96] R.C.Zhao, Y.Jiang, C.M.Verfaillie, A model of human p210bcr/ABL-mediated chronic myelogenous leukemia by transduction of primary normal human CD34+ cells with a BCR/ABL-containing retroviral vector, Blood. 97 (2001) 2406–2412. doi:10.1182/blood.V97.8.2406.
[97] J.W.Gratama, D.R.Sutherland, M.Keeney, Flow cytometric enumeration and immunophenotyping of hematopoietic stem and progenitor cells, Semin. Hematol. 38 (2001) 139–147. doi:10.1016/S0037-1963(01)90047-2.
[98] L.E.Sidney, M.J.Branch, S.E.Dunphy, H.S.Dua, A.Hopkinson, Concise review: Evidence for CD34 as a common marker for diverse progenitors, Stem Cells. 32 (2014) 1380–1389. doi:10.1002/stem.1661.
[99] R.Handgretinger, T.Klingebiel, P.Lang, M.Schumm, S.Neu, A.Geiselhart, P.Bader, P.G.Schlegel, J.Greil, D.Stachel, R.J.Herzog, D.Niethammer, Megadose transplantation of purified peripheral blood CD34+ progenitor cells from HLA-mismatched parental donors in children, Bone Marrow Transplant. 27 (2001) 777–783. doi:10.1038/sj.bmt.1702996.
[100] B.Vrtovec, G.Poglajen, L.Lezaic, M.Sever, D.Domanovic, P.Cernelc, A.Socan, S.Schrepfer, G.Torre-Amione, F.Haddad, J.C.Wu, Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up., Circ. Res. 112 (2013) 165–173. doi:10.1161/CIRCRESAHA.112.276519.
[101] K.Sudo, H.Ema, Y.Morita, H.Nakauchi, Age-associated characteristics of murine hematopoietic stem cells [In Process Citation], J Exp Med. 192 (2000) 1273–1280.
[102] H.Vaziri, W.Dragowska, R.C.Allsopp, T.E.Thomas, C.B.Harley, P.M.Lansdorp, Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 9857–9860. doi:10.1073/pnas.91.21.9857.
[103] D.Harraan, Lawrence Berkeley National Laboratory Recent Work Title AGING: A THEORY BASED ON FREE RADICAL AND RADIATION CHEMISTRY, (1955) Lawrence Berkeley National Laboratory. https://escholarship.org/uc/item/3w86c4g7.
[104] J.-A.L.Kelsey C. Martin Mhatre V. Ho, 基因的改变NIH Public Access, Bone. 23 (2012) 1–7. doi:10.1016/j.exger.2009.12.010.Mechanisms.
[105] T.J.Ho, L.I.Ho, K.W.Hsueh, T.M.Chan, S.L.Huang, J.G.Lin, W.M.Liang, W.H.Hsu, H.J.Harn, S.Z.Lin, Tai Chi intervention increases progenitor CD34+ cells in young adults, Cell Transplant. 23 (2014) 613–620. doi:10.3727/096368914X678355.
[106] N.E.Morone, C.M.Greco, Mind-body interventions for chronic pain in older adults: A structured review, Pain Med. 8 (2007) 359–375. doi:10.1111/j.1526-4637.2007.00312.x.
[107] J.X.Li, Y.Hong, K.M.Chan, Tai chi: Physiological characteristics and beneficial effects on health, Br. J. Sports Med. 35 (2001) 148–156. doi:10.1136/bjsm.35.3.148.
[108] H.Pan, Y.Pei, B.Li, Y.Wang, J.Liu, H.Lin, Tai Chi Chuan in postsurgical non-small cell lung cancer patients: Study protocol for a randomized controlled trial, Trials. 19 (2018) 1–9. doi:10.1186/s13063-017-2320-x.
[109] R.Spolski, P.Li, W.J.Leonard, Biology and regulation of IL-2: from molecular mechanisms to human therapy, Nat. Rev. Immunol. 18 (2018) 648–659. doi:10.1038/s41577-018-0046-y.
[110] S.Leung, X.Liu, L.Fang, X.Chen, T.Guo, J.Zhang, The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease, Cell. Mol. Immunol. 7 (2010) 182–189. doi:10.1038/cmi.2010.22.
[111] M.A.Yui, L.L.Sharp, W.L.Havran, E.V.Rothenberg, Preferential Activation of an IL-2 Regulatory Sequence Transgene in TCRγδ and NKT Cells: Subset-Specific Differences in IL-2 Regulation, J. Immunol. 172 (2004) 4691–4699. doi:10.4049/jimmunol.172.8.4691.
[112] M.A.Yui, G.Hernández-Hoyos, E.V.Rothenberg, A New Regulatory Region of the IL-2 Locus That Confers Position-Independent Transgene Expression, J. Immunol. 166 (2001) 1730–1739. doi:10.4049/jimmunol.166.3.1730.
[113] R.Setoguchi, S.Hori, T.Takahashi, S.Sakaguchi, Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization, J. Exp. Med. 201 (2005) 723–735. doi:10.1084/jem.20041982.
[114] F.Granucci, C.Vizzardelli, N.Pavelka, S.Feau, M.Persico, E.Virzi, M.Rescigno, G.Moro, P.Ricciardi-Castagnoli, Inducible IL-2 production by dendritic cells revealed by global gene expression analysis, Nat. Immunol. 2 (2001) 882–888. doi:10.1038/ni0901-882.
[115] S.Jiang, D.S.Game, D.Davies, G.Lombardi, R.I.Lechler, Activated CD1d-restricted natural killer T cells secrete IL-2: Innate help for CD4+CD25+ regulatory T cells?, Eur. J. Immunol. 35 (2005) 1193–1200. doi:10.1002/eji.200425899.
[116] M.B.Pepys, G.M.Hirschfield, C-reactive protein: A critical update, J. Clin. Invest. 111 (2003) 1805–1812. doi:10.1172/JCI200318921.
[117] N.R.Sproston, J.J.Ashworth, Role of C-reactive protein at sites of inflammation and infection, Front. Immunol. 9 (2018) 1–11. doi:10.3389/fimmu.2018.00754.
[118] C.Escadafal, S.Incardona, B.L.Fernandez-Carballo, S.Dittrich, The good and the bad: using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings, BMJ Glob. Heal. 5 (2020). doi:10.1136/bmjgh-2020-002396.
[119] A.Pathak, A.Agrawal, Evolution of C-reactive protein, Front. Immunol. 10 (2019). doi:10.3389/fimmu.2019.00943.
[120] G.Hartmann, M.Tschöp, R.Fischer, C.Bidlingmaier, R.Riepl, K.Tschöp, H.Hautmann, S.Endres, M.Toepfer, High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein, Cytokine. 12 (2000) 246–252. doi:10.1006/cyto.1999.0533.
[121] L.Fontana, Modulating human aging and age-associated diseases, Biochim. Biophys. Acta - Gen. Subj. 1790 (2009) 1133–1138. doi:10.1016/j.bbagen.2009.02.002.
[122] X. hongPan, A.Mahemuti, X. huaZhang, Y. pingWang, P.Hu, J. boJiang, M. xiangXiang, G.Liu, J. anWang, Effect of Tai Chi exercise on blood lipid profiles: a meta-analysis of randomized controlled trials, J. Zhejiang Univ. Sci. B. 17 (2016) 640–648. doi:10.1631/jzus.B1600052.
[123] D.Vissers, W.Hens, J.Taeymans, J.P.Baeyens, J.Poortmans, L.VanGaal, The Effect of Exercise on Visceral Adipose Tissue in Overweight Adults: A Systematic Review and Meta-Analysis, PLoS One. 8 (2013). doi:10.1371/journal.pone.0056415.
[124] C.P.Earnest, Exercise interval training: An improved stimulus for improving the physiology of pre-diabetes, Med. Hypotheses. 71 (2008) 752–761. doi:10.1016/j.mehy.2008.06.024.
[125] A.M.Kuramoto, Therapeutic benefits of Tai Chi exercise: Research review, Wis. Med. J. 105 (2006) 42–46.
[126] Y.Tamura, Y.Tanaka, F.Sato, B.C.Jong, H.Watada, M.Niwa, J.Kinoshita, A.Ooka, N.Kumashiro, Y.Igarashi, S.Kyogoku, T.Maehara, M.Kawasumi, T.Hirose, R.Kawamori, Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients, J. Clin. Endocrinol. Metab. 90 (2005) 3191–3196. doi:10.1210/jc.2004-1959.
[127] S.J.Motivala, J.Sollers, J.Thayer, M.R.Irwin, Tai Chi Chih acutely decreases sympathetic nervous system activity in older adults, Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 61 (2006) 1177–1180. doi:10.1093/gerona/61.11.1177.
[128] P.C.Lin, T.W.Chiou, P.Y.Liu, S.P.Chen, H.I.Wang, P.C.Huang, S.Z.Lin, H.J.Harn, Food supplement 20070721-GX may increase CD34+ stem cells and telomerase activity, J. Biomed. Biotechnol. 2012 (2012). doi:10.1155/2012/498051.
[129] S.Méndez-Ferrer, D.Lucas, M.Battista, P.S.Frenette, Haematopoietic stem cell release is regulated by circadian oscillations, Nature. 452 (2008) 442–447. doi:10.1038/nature06685.
[130] S.Méndez-Ferrer, T.V.Michurina, F.Ferraro, A.R.Mazloom, B.D.MacArthur, S.A.Lira, D.T.Scadden, A.Ma’ayan, G.N.Enikolopov, P.S.Frenette, Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature. 466 (2010) 829–834. doi:10.1038/nature09262.
[131] A.Spiegel, S.Shivtiel, A.Kalinkovich, A.Ludin, N.Netzer, P.Goichberg, Y.Azaria, I.Resnick, I.Hardan, H.Ben-Hur, A.Nagler, M.Rubinstein, T.Lapidot, Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling, Nat. Immunol. 8 (2007) 1123–1131. doi:10.1038/ni1509.
[132] L.Wang, X.Guan, H.Wang, B.Shen, Y.Zhang, Z.Ren, Y.Ma, X.Ding, Y.Jiang, A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation, Stem Cell Res. Ther. 8 (2017) 1–14. doi:10.1186/s13287-017-0625-z.
[133] H.R.Heo, L.Chen, B.An, K.S.Kim, J.Ji, S.H.Hong, Hormonal regulation of hematopoietic stem cells and their niche: A focus on estrogen, Int. J. Stem Cells. 8 (2015) 18–23. doi:10.15283/ijsc.2015.8.1.18.
[134] M.L.Topel, S.S.Hayek, Yi-An Ko, P.B.Sandesara, A.S.Tahhan, I.Hesaroieh, E.Mahar, G.S.Martin, E.K.Waller, A.A.Quyyumi, Sex differences in circulating progenitor cells, J. Am. Heart Assoc. 6 (2017). doi:10.1161/JAHA.117.006245.
[135] M.Hagins, W.Moore, A.Rundle, Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?, BMC Complement. Altern. Med. 7 (2007) 1–9. doi:10.1186/1472-6882-7-40.
[136] T.Boone, R.Board, T.Astorino, J.Baker, S.Brock, L.Dalleck, E.Goulet, R.Gotshall, A.Hutchison, M.Knight-Maloney, L.Kravitz, J.Laskin, Y.A.Lim, L.Lowery, D.Marks, C.Mermier, R.Robergs, C.Vella, D.Wagner, F.Wyatt, B.Zhou, S.Ladawan, M.Burtscher, P.Wannanon, N.Leelayuwat, Journal of Exercise Physiologyonline Volume 21 Number 2 Editor-in-Chief The Intensity of Qigong Exercise, 21 (2018) 100–115.
[137] R.H.H.Engelbert, M.VanBergen, T.Henneken, P.J.M.Helders, T.Takken, Exercise tolerance in children and adolescents with musculoskeletal pain in joint hypermobility and joint hypomobility syndrome, Pediatrics. 118 (2006). doi:10.1542/peds.2005-2219.
[138] J.S.Roy, L.J.Bouyer, P.Langevin, C.Mercier, Beyond the joint: The role of central nervous system reorganizations in chronic musculoskeletal disorders, J. Orthop. Sports Phys. Ther. 47 (2017) 817–821. doi:10.2519/jospt.2017.0608.
[139] J.Ebnezar, R.Nagarathna, B.Yogitha, H.R.Nagendra, Effects of an integrated approach of hatha yoga therapy on functional disability, pain, and flexibility in osteoarthritis of the knee joint: A randomized controlled study, J. Altern. Complement. Med. 18 (2012) 463–472. doi:10.1089/acm.2010.0320.
[140] S.S.M.Fong, S.S.M.Ng, H.W.Lee, M.Y.C.Pang, W.S.Luk, J.W.Y.Chung, J.Y.H.Wong, R.S.W.Masters, The effects of a 6-month tai chi qigong training program on temporomandibular, cervical, and shoulder joint mobility and sleep problems in nasopharyngeal cancer survivors, Integr. Cancer Ther. 14 (2015) 16–25. doi:10.1177/1534735414556508.
[141] D.Xu, Y.Hong, J.Li, K.Chan, Effect of tai chi exercise on proprioception of ankle and knee joints in old people, Br. J. Sports Med. 38 (2004) 50–54. doi:10.1136/bjsm.2002.003335.
[142] A.M.Hall, C.G.Maher, P.Lam, M.Ferreira, J.Latimer, Tai chi exercise for treatment of pain and disability in people with persistent low back pain: A randomized controlled trial, Arthritis Care Res. 63 (2011) 1576–1583. doi:10.1002/acr.20594.
[143] C.H.Chou, C.L.Hwang, Y.T.Wu, Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: A meta-analysis, Arch. Phys. Med. Rehabil. 93 (2012) 237–244. doi:10.1016/j.apmr.2011.08.042.
[144] J.-M.Zhang, J.An, NOT RIGHT REFERENCECytokines, Inflammation and Pain, Int Anesth. Clin. 69 (2009) 482–489. doi:10.1097/AIA.0b013e318034194e.Cytokines.
[145] O.Boyman, J.Sprent, The role of interleukin-2 during homeostasis and activation of the immune system, Nat. Rev. Immunol. 12 (2012) 180–190. doi:10.1038/nri3156.
[146] A.Han, M.Judd, V.Welch, T.Wu, P.Tugwell, G.A.Wells, Tai chi for treating rheumatoid arthritis, Cochrane Database Syst. Rev. (2004). doi:10.1002/14651858.cd004849.
[147] G.Banfi, M.Diani, P.D.Pigatto, E.Reali, T cell subpopulations in the physiopathology of fibromyalgia: Evidence and perspectives, Int. J. Mol. Sci. 21 (2020). doi:10.3390/ijms21041186.
[148] Y.Ganor, M.Besser, N.Ben-Zakay, T.Unger, M.Levite, Human T Cells Express a Functional Ionotropic Glutamate Receptor GluR3, and Glutamate by Itself Triggers Integrin-Mediated Adhesion to Laminin and Fibronectin and Chemotactic Migration, J. Immunol. 170 (2003) 4362–4372. doi:10.4049/jimmunol.170.8.4362.
[149] Y.Kobayashi, N.Kiguchi, Y.Fukazawa, F.Saika, T.Maeda, S.Kishioka, Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system, J. Biol. Chem. 290 (2015) 12603–12613. doi:10.1074/jbc.M115.636506.
[150] M.S.Slaiby A, Phenotypic Identification Of Spinal Cord-Infiltrating CD4+ T Lymphocytes In A Murine Model Of Neuropathic Pain, J. Pain Reli. s3 (2014) 1–20. doi:10.4172/2167-0846.s3-003.
[151] S.H.Yeh, H.Chuang, L.W.Lin, C.Y.Hsiao, H.L.Eng, Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells, Br. J. Sports Med. 40 (2006) 239–243. doi:10.1136/bjsm.2005.022095.
[152] W.Liao, J.Lin, W.J.Leonard, IL-2 Family Cytokines, Curr. Opin. Immunol. 23 (2011) 418–423. doi:10.1016/j.coi.2011.08.003.IL-2.
[153] J.-A.L.Kelsey C. Martin Mhatre V. Ho, 基因的改变NIH Public Access, Bone. 23 (2012) 1–7. doi:10.1016/j.immuni.2013.01.004.Interleukin-2.
[154] J.-A.L.Kelsey C. Martin Mhatre V. Ho, 基因的改变NIH Public Access, Bone. 23 (2012) 1–7. doi:10.1007/s10067-009-1094-2.Evaluating.
[155] L.Labusca, Stem cells for the treatment of musculoskeletal pain, World J. Stem Cells. 7 (2015) 96. doi:10.4252/wjsc.v7.i1.96.
[156] S.H.Ross, D.A.Cantrell, Signaling and Function of Interleukin-2 in T Lymphocytes, Annu. Rev. Immunol. 36 (2018) 411–433. doi:10.1146/annurev-immunol-042617-053352.
[157] L.K.Teixeira, B.P.F.Fonseca, B.A.Barboza, J.P.B.Viola, Teixeira et al._2005_The role of interferon-γ γ on immune and allergic responses.pdf, 100 (2005) 137–144. |